
Progratntning Environtnent
HP-UX Concepts and Tutorials

HP Part Number 97089-90042

Flidl HEWLETT
a!~ PACKARD

Hewlett-Packard Company
3404 East Harmony Road, Fort Collins, Colorado 80525

NOTICE
The information contained in this document is subject to change without notice.

HEWLETI-PACKARD MAKES NO WARRANTY OF ANY KIND WITH REGARD TO THIS MANUAL, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Hewlett-Packard shall not be liable
for errors contained herein or direct, indirect, special, incidental or consequential damages in connection with the furnishing, performance,
or use of this material.

WARRANTY
A copy of the specific warranty terms applicable to your Hewlett-Packard product and replacement parts can be obtained from your local
Sales and Service Office.

Copyright © Hewlett-Packard Company 1986

This document contains information which is protected by copyright. All rights are reserved. Reproduction, adaptation, or translation without
prior written premission is prohibited, except as allowed under the copyright laws.

Restricted Rights Legend

Use, duplication or disclosure by the U.S. Government Department of Defense is subject to restrictions as set forth in paragraph (bX3Xii) of the
Rights in Technical Data and Software clause in FAR 52.227-7013.

Copyright © AT&T, Inc. 1980,1984

Copyright © The Regents of the University of California 1979, 1980, 1983

This software and documentation is based in part on the Fourth Berkeley Software Distribution under license from the Regents of the University
of California.

ii

Printing History

New editions of this manual will incorporate all material updated since the previous
edition. Update packages may be issued between editions and contain replacement and
additional pages to be merged into the manual by the user. Each updated page will be
indicated by a revision date at the bottom of the page. A vertical bar in the margin
indicates the changes on each page. Note that pages which are rearranged due to changes
on a previous page are not considered revised.

The manual printing date and part number indicate its current edition. The printing
date changes when a new edition is printed. (Minor corrections and updates which are
incorporated at reprint do not cause the date to change.) The manual part number
changes when extensive technical changes are incorporated.

August 1986 ... Edition 1

Printing History iii

Table of Contents
HP-UX Programming

Introduction. -. 1
Basics .. 2

Program Arguments ... 2
The "Standard Input" and "Standard Output" 3

The Standard I/O Library .. 5
File Access .. 5
Error Handling - Stderr and Exit .. 8
Miscellaneous I/O Functions 9

Low-Level I/O .. 10
File Descriptors '.' .. 10
Read and Write .. 11
Open, Close, Unlink .. 13
Random Access - Lseek .. 15
Error Processing .. 16

Processes .. 1 7
The "System" Function. .. 17
Low-Level Process Creation - Execl and Execv 17
Control of Processes - Fork and Wait .. 19
Pipes .. 20

Signals - Interrupts and All That .. 23
Appendix - The Standard I/O Library. ... 28

General Usage . ; .. 28
Calls '.' 29

HP-UX Programming
Introduction
This tutorial describes how to write programs that interface with the HP-UX operating system in
a non-trivial way. This includes programs that use files by name, that use pipes, that invoke other
commands as they run, or that attempt to catch interrupts and other signals during execution.

The document collects material which is scattered throughout several sections of the HP-UX
Reference manual. There is no attempt to be complete; only generally useful material is dealt
with. It is assumed that you will be programming in C, so you must be able to read the language
roughly up to the level of The C Programming Language. Some of the material in this tutorial
is based on topics covered more carefully there. You should also be familiar with HP-UX itself.

HP-UX Programming 1

Basics

Program Arguments
When a C program is run as a command, the arguments on the command line are made available
to the function main as an argument count argc and an array argu of pointers to character strings
that contain the arguments. By convention, argu[O] is the command name itself, so argc is almost
always! greater than O.

The follOWing program illustrates the mechanism: it simply echoes its arguments back to the
terminal. (This is essentially the echo command.)

main (argc, argv)
int argc;
char *argv[];
{

int i;

/* echo arguments */

for (i = 1; i < argc; i++)
printf("%s%c", argv[i], (i<argc-1) ?

}
'\n') ;

argu is a pointer to an array whose individual elements are pointers to arrays of characters; each
is terminated by \0, so they can be treated as strings. The program starts by printing argu[l]
and loops until it has printed them all.

The argument count and the arguments are parameters to main. If you want to keep them
around so other routines can get at them, you must handle them like any other argument you
want to pass on.

1 Direct calls to exec(2) could violate this condition. Programs that use argv[O] usually assume that it is present, but this improper invocation
could cause strange failures.

2 HP-UX Programming

The "Standard Input" and "Standard Output"
The simplest input mechanism is to read the "standard input", which is generally the user's
terminal. The function getchar returns the next input character each time it is called. A file
can be substituted for the terminal by using the < convention: if prog uses getchar, then the
command line

prog <file

causes prog to read file instead of the terminal. Prog itself need know nothing about where its
input is coming from. This is also true if the input comes from another program via the HP-UX
pipe mechanism:

otherprog I prog

provides the standard input for prog from the standard output of otherprog.

Getchar returns the value EOF when it encounters the end-of-file (or an error) on whatever you
are reading. The value of EOF is normally defined to be -1, but it is unwise to take any advantage
of that knowledge. As will become clear shortly, this value is automatically defined for you when
you compile a program, and need not be of any concern.

Similarly, putchar(c) puts the character c on the "standard output", which is also by default the
terminal. The output can be captured on a file by using >: if prog uses putchar,

prog >outfile

writes the standard output on outfile instead of the terminal. outfile is created if it doesn't exist;
if it already exists, its previous contents are overwritten. And a pipe can be used:

prog I otherprog

puts the standard output of prog into the standard input of otherprog.

The function printf, which formats output in various ways, uses the same mechanism as putchar
does, so calls to printf and putchar can be intermixed in any order; the output will appear in the
order of the calls.

Similarly, the function scanf provides for formatted input conversion; it will read the standard
input and break it up into strings, numbers, etc., as desired. scanf uses the same mechanism as
getchar, so calls to them can also be intermixed.

HP-UX Programming 3

Many programs read only one input and write one output; for such programs I/O with getchar,
putchar, scanj, and printj may be entirely adequate, and it is almost always enough to get started.
This is particularly true if the HP-UX pipe facility is used to connect the output of one program to
the input of the next. For example, the following program strips out all ASCII control characters
from its input (except for newline and tab).

#include <stdio.h>

maine)
{

int c;

1* ccstrip: strip non-graphic characters *1

while ((c = getchar(\I)) 1= EOF)
if ((c >= ' , && c < 0177) I I c == '\t' I I c '\n')

putchar(c);
exit (0) ;

}

The line

#include <stdio.h>

should appear at the beginning of each source file. It causes the C compiler to read a file
(jusr/include/stdio.h) of standard routines and symbols that includes the definition of EOF.

If it is necessary to treat multiple files, you can use cat to collect the files for you:

cat file1 file2 . . . I ccstrip >output

and thus avoid learning how to access files from a program. By the way, the call to exit at
the end is not necessary to make the program work properly, but it assures that any caller of
the program will see a normal termination status (conventionally O) from the program when it
completes. Section 6 discusses status returns in more detail.

4 HP-UX Programming

The Standard 1/0 Library
The "Standard I/O Library is a collection of routines intended to provide efficient and portable
I/O services for most C programs. The standard I/O library is available on each system that
supports C, so programs that confine their system interactions to its facilities can be transported
from one system to another essentially without change.

In this section, we will discuss the basics of the standard I/O library. The appendix contains a
more complete description of its capabilities.

File Access
The programs written so far have all read the standard input and written the standard output,
which we have assumed are magically pre-defined. The next step is to write a program that
accesses a file that is not already connected to the program. One simple example is WC, which
counts the lines, words and characters in a set of files. For instance, the command

we x. e y. e

prints the number of lines, words and characters in x.c and y.c and the totals.

The question is how to arrange for the named files to be read - that is, how to connect the file
system names to the I/O statements that actually read the data.

The rules are simple. Before it can be read or written a file has to be opened by the standard
library function fopen. Fopen takes an external name (like x.c or y.c), does some housekeeping
and negotiation with the operating system, and returns an internal name which must be used in
subsequent reads or writes of the file.

This internal name is actually a pointer, called a file pointer, to a structure which contains
information about the file, such as the location of a buffer, the current character position in the
buffer, whether the file is being read or written, and the like. Users don't need to know the
details, because part of the standard I/O definitions obtained by including stdio.h is a structure
definition called FILE. The only declaration needed for a file pointer is a line resembling:

FILE *fp, *fopen();

This says that fp is a pointer to a FILE, and fopen returns a pointer to a FILE (FILE is a type
name, like int; not a structure tag).

HP-UX Programming 5

The actual call to jopen in a program is

fp = fopen(<name>, <mode»;

The first argument of jopen is the <name> of the file, as a character string. The second
argument is the <mode>, also as a character string, which indicates how you intend to use
the file. The only allowable modes are read (r) write (w) or append (a), and their updating
counterparts (r+, w+, and a+).

If you open a non-existent file for writing or appending, it is created (if possible). Opening an
existing file for writing causes the old contents to be discarded. Trying to read a file that does
not exist is an error, and there may be other causes of error as well (like trying to read a file
when you don't have permission). If there is any error, jopen will return the null pointer value
NULL (defined in stdio.h).

The next thing needed is a way to read or write the file once it is open. There are several
possibilities, of which getc and putc are the simplest. getc returns the next character from a file;
it needs the file pointer to tell it what file. Thus

c = getc(fp)

places in c the next character from the file referred to by jp; it returns EOF when it reaches end
of file. putc is the inverse of getc:

putc(c, fp)

puts the character c on the file jp and returns c. Getc and putc return EOF on error.

When a program is started, three files are opened automatically, and file pointers are provided for
them. These files are the standard input, the standard output, and the standard error output; the
corresponding file pointers are called stdin, stdout, and stderr. Normally these are all connected
to the terminal, but can be redirected to files or pipes as described in the Basics section earlier
in this tutorial. Stdin, stdout and stderr are pre-defined in the I/O library as the standard input,
output and error files; they can be used anywhere an object of type FILE * can be. They are
constants, however, not variables, so don't try to assign to them.

With some of the preliminaries out of the way, we can now write wc. The basic design is one
that has been found convenient for many programs: if there are command-line arguments, they
are processed in order. If there are no arguments, the standard input is processed. This way
the program can be used stand-alone or as part of a larger process.

6 HP-UX Programming

#include <stdio.h>

main (argc, argv)
int argc;

/* wc: count lines, words, chars */

char *argv [] ;
{

}

int c, i, inword;
FILE *fp, *fopen();
long linect, wordct, charct;
long tlinect = 0, twordct = 0, tcharct 0;

i = 1;
fp = stdin;
do {

if (argc > 1 && (fp=fopen(argv[i], "r"» == NULL) {
fprintf(stderr, "wc: can>t open %s\n", argv[i]);
continue;

}

linect = wordct = charct = inword 0;
while ((c = getc (fp» ! = EOF) {

}

charct++;
if (c == > \n >)

linect++;
if (c == > > I I c == > \ t > I I c > \n >)

inword = 0;
else if (inword == 0) {

inword = 1;
wordct++;

}

printf("%7ld %7ld %7ld" , linect, wordct, charct);
printf(argc> 1 ? II %s\n" : "\n", argv[i]);
fclose(fp);
tlinect += linect;
twordct += wordct;
tcharct += charct;

} while (++i < argc);
if (argc > 2)

printf("%7ld %7ld %7ld total\n", tlinect, twordct, tcharct);
exit (0) ;

The function jprintj is identical to printj except that the first argument is a file pointer that
specifies the file to be written.

HP-UX Programming 7

The function fclose is the inverse of jopen; it breaks the connection between the file pointer and
the external name that was established by jopen, freeing the file pointer for another file. Since
there is a limit on the number of files that a program can have open simultaneously, it's a good
idea to release resources when they are no longer needed. There is also another reason to call
jdose on an output file - it flushes the buffer in which putc is collecting output (fdose is called
automatically for each open file when a program terminates normally).

Error Handling - Stderr and Exit
Stderr is assigned to a program in the same way that stdin and stdout are. Output written on
stderr appears on the user's terminal even if the standard output is redirected. We writes its
diagnostics on stderr instead of stdout so that if one of the files can't be accessed for some
reason, the message finds its way to the user's terminal instead of disappearing down a pipeline
or into an output file.

The program actually signals errors in another way, using the function exit to terminate program
execution. The argument of exit is available to whatever process called it, so the success
or failure of a program can be tested by another program that uses it as a sub-process. By
convention, a return value of 0 signals that all is well; non-zero values signal abnormal situations.
The preceding example, we, has only a one exit condition, so it provides no means for detecting
errors when it is used as a sub-process.

Exit itself calls jdose for eaeh open output file, to flush out any buffered output, then calls
a routine named _exit. The function _exit causes immediate termination without any buffer
flushing; it can be called directly if desired. Use of _exit becomes necessary when terminating a
parent and child process because both processes set up variables and buffers that are duplicates
of each other. If _exit is not used during termination of at least one of the processes, both sets
of buffers are flushed, causing duplicate output.

8 HP-UX Programming

Miscellaneous 1/0 Functions
The standard I/O library provides several other I/O functions besides those previously illustrated.

Normally output with putc, etc., is buffered (except to stderr); to force it out immediately, use
fflush(fp} .

Fscanf is identical to scanf, except that its first argument is a file pointer (as with fprintf) that
specifies the file from which the input comes; it returns EOF at end of file.

The functions sscanf and sprintf are identical to fscanf and fprintf, except that the first argument
names a character string instead of a file pointer. The conversion is done from the string for
sscanf and into it for sprintf.

fgets(buf, size, fp} copies the next line from fp, up to and including a newline, into buf; at most
size-l characters are copied; it returns NULL at end of file. fputs(buf, fp} writes the string in buf
onto file fp.

The function ungetc(c, fp} "pushes back" the character onto the input stream fp; a subsequent
call to getc, fscanf, etc., will encounter c. Only one character of push-back per file is permitted.

HP-UX Programming 9

Low-Level 1/0
This section describes the bottom level of I/O on the HP-UX system. The lowest level of I/O in
HP-UX provides no buffering or any other services; it is in fact a direct entry into the operating
system. You are entirely on your own, but on the other hand, you have the most control over
what happens. And since the calls and usage are quite simple, this isn't as bad as it sounds.

File Descriptors
In the HP-UX operating system, all input and output is done by reading or writing files, because
all peripheral devices, even the user's terminal, are files in the file system. This means that
a single, homogeneous interface handles all communication between a program and peripheral
devices.

In the most general case, before reading or writing a file, it is necessary to inform the system of
your intent to do so, a process called "opening" the file. If you are going to write on a file, it
may also be necessary to create it. The system checks your right to do so (Does the file exist?
Do you have permission to access it?), and if all is well, returns a small positive integer called
a file descriptor. Whenever I/O is to be done on the file, the file descriptor is used instead
of the name to identify the file. (This is roughly analogous to the use of READ (5 ••••) and
WRITE (6 ••••) in FORTRAN) All information about an open file is maintained by the system;
the user program refers to the file only by the file descriptor.

The file pointers discussed earlier are similar in spirit to file descriptors, but file descriptors are
more fundamental. A file pointer is a pointer to a structure that contains, among other things,
the file descriptor for the file in question.

Since input and output involving the user's terminal are so common, special arrangements exist
to make this convenient. When the command interpreter (the "shell") runs a program, it opens
three files, with file descriptors 0 (stdin), 1 (stdout) , and 2 (stderr), called the standard input,
standard output, and standard error. All of these are normally connected to the terminal, so
if a program reads file descriptor 0 and writes file descriptors 1 and 2, it can do terminal I/O
without needing to open extra files.

10 HP-UX Programming

If I/O is redirected to and from files with < and >, as in

prog <infile >outfile

the shell changes the default assignments for file descriptors 0 and 1 from the terminal to the
named files. Similar observations hold if the input or output is associated with a pipe. Normally,
file descriptor 2 remains attached to the terminal so error messages can go there. In all cases,
the file assignments are changed by the shell; not by the program. The program does not need
to know where its input comes from nor where its output goes, as long as it uses file 0 for input
and 1 and 2 for output.

Read and Write
All input and output is done by two functions called read and write. For both, the first argument
is a file descriptor. The second argument is a buffer in your program where the data is to come
from or go to. The third argument is the number of bytes to be transferred. The calls are

n_read = read(fd, buf, n);

n_written = write(fd, buf, n);

Each call returns a byte count which is the number of bytes actually transferred. On reading,
the number of bytes returned may be less than the number asked for, because fewer than n
bytes remained to be read. {When the file is a terminal, read normally reads only up to the next
newline, which is generally less than what was requested.} A return value of zero bytes implies
end of file, and -1 indicates an error of some sort. For writing, the returned value is the number
of bytes actually written; it is generally an error if this isn't equal to the number supposed to be
written.

The number of bytes to be read or written is quite arbitrary. The two most common values
are 1, which means one character at a time {"unbuffered"}, and 512, which is a convenient
buffer size. Buffered 512-byte blocks are more efficient, but one-character-at-a-time I/O is not
inordinately inefficient. 1

1 Some character special files insist on reads or writes of a specified or minimum size. Refer to the appropriate HP·UX Reference page

for more information.

HP-UX Programming 11

By combining these concepts, we can write a simple program to copy from a specified input
file to a specified output file. This program can copy almost anything to anything by specifying
redirected input and output files.

#define BUFSIZE 512 /* best size for

mainO /* copy input to
{

char buf[BUFSIZE] ;
int n;

while ((n = read(O, buf, BUFSIZE» > 0)
write(l, buf, n);

exit(O);
}

HP-UX */

output */

If the file size is not a multiple of BUFSIZE, some read will return a smaller number of bytes to
be written by write; the next call to read after that will return zero.

It is instructive to see how read and write can be used to construct higher level routines like
getchar, putchar, etc. For example, here is a version of getchar which does unbuffered input.

#define CMASK 0377 /* for making char's> 0 */
getchar() /* unbuffered single character input */
{

char c;

return((read(O, &c, 1) > 0) ? c & CMASK EOF);
}

c must be declared char, because read accepts a character pointer. The character being returned
must be masked with 0377 to ensure that it is positive; otherwise sign extension may make it
negative. (The constant 0377 is appropriate for HP computers, but not necessarily for other
computers and systems.)

12 HP-UX Programming

The second version of getchar does input in big chunks, and hands out the characters, one at a
time.

#define CMASK 0377
#define BUFSIZE 512
getcharO
{

static char
static char
static int

/* for making char's> 0 */

/* buffered version */

buf[BUFSIZE] ;
*bufp = buf;
n = 0;

if (n == 0) { /* buffer is empty */
n = read(O. buf. BUFSIZE);
bufp = buf;

}

return«--n >= 0) ? *bufp++ & CMASK EOF);
}

Open, Close, Unlink
Other than the default standard input, output and error files, you must explicitly open files in
order to read or write them. There are two system entry points for this, open and creat.

Open is rather like the fopen discussed in the previous section, except that instead of returning
a file pointer, it returns a file descriptor, which is just an into

int fd;

fd = open(name. of lags);

As with fopen, the name argument is a character string corresponding to the external file name.
The of lags argument is different. It consists of one or more flags that are logical ORed to
indicate what types of file operations are to be allowed while the file is open. One of the three
flags O_RDONLY (open for read only), O_WRONLY (open for write only), or O_RDWR (open
for read/write) must be included. Refer to open(2) in the HP-UX Reference for a complete list
of flags, some of which can be changed while the file is open. open returns -1 if any error
occurs; otherwise it returns a valid file descriptor.

If you need to open a file that does not exist, use a third argument to specify the file mode as
follows:

fd = open(name. of lags. mode);

HP-UX Programming 13

As before, open returns a file descriptor if it was able to create the file called name, or -1 if not.
If the file already exists, open truncates it to zero length. Mode defines the access mode that is
to be assigned to the file if the file does not already exist.

In the HP-UX file system, mode defines nine bits of protection information associated with a
file that control read, write, and execute permission for the owner of the file, for the owner's
group, and for all others. Thus a three-digit octal number is most convenient for specifying the
permissions. For example, 0755 specifies read, write and execute permission for the owner,
and read and execute permission for the group and everyone else.

To illustrate, here is a simplified version of the HP-UX utility cp, a program which copies one
file to another. (The main simplification is that our version copies only one file and does not
permit the second argument to be a directory.)

#define NULL 0
#define BUFSIZE 512
#define PMODE 0644

main(argc, argv)
int argc;
char *argv[];
{

int f1, f2, n;
char buf[BUFSIZE] ;

if (argc != 3)

/* RW for owner, R for group, others */

/* cp: copy f1 to f2 */

error("Usage: cp from to", NULL);

}

if «f1 = open(argv[1], O_RDONLY» == -1)
error("cp: can't open %S", argv[1]);

if «f2 = creat(argv[2], O_WRONLY, PMODE» -1)
error(" cp : can't create %S", argv[2]);

while «n = read(f1, buf, BUFSIZE» > 0)
if (write(f2, buf, n) != n)

error("cp: write error", NULL);
exit(O);

error(s1, s2)
char *s1, *s2;
{

/* print error message and die */

}

printf(s1, s2);
printf("\n");
exit(1);

14 HP-UX Programming

As we said earlier, there is a limit (typically 15-25) on the number of files which a program can
have open simultaneously. Accordingly, any program which intends to process many files must
be prepared to re-use file descriptors. The routine close breaks the connection between a file
descriptor and an open file, and frees the file descriptor for use with some other file. Termination
of a program via exit or return from the main program closes all open files.

The function unlink«filename» removes the file <filename> from the file system.

Random Access - Lseek
File I/O is normally sequential: each read or write takes place at a position in the file right after
the previous one. When necessary, however, a file can be read or written in any arbitrary order.
The system call lseek provides a way to move around in a file without actually reading or writing:

lseek(fd, offset, origin);

forces the current position in the file whose descriptor is fd to move to position offset, which
is taken relative to the location specified by origin. Subsequent reading or writing will begin at
that position. offset is a long; fd and origin are ints. origin can be 0, 1, or 2 to specify that
offset is to be measured from the beginning, from the current position, or from the end of the
file respectively. For example, to append to a file, seek to the end before writing:

lseek(fd, OL, 2);

To get back to the beginning ("rewind"),

lseek(fd, OL, 0);

Notice the OL argument; it could also be written as (long) O.

With lseek, it is possible to treat files more or less like large arrays, at the price of slower access.
For example, the following simple function reads any number of bytes from any arbitrary place
in a file.

get(fd, pos, buf, n)
int fd, n;

/* read n bytes from position pos */

long pos;
char *buf;
{

}

lseek(fd, pos, 0); /* get to pos */
return(read(fd, buf, n));

HP-UX Programming 15

Error Processing
The routines discussed in this section, and, in fact, all routines that are direct entries into the
system can incur errors. Usually they indicate an error by returning a value of -1. Sometimes
it is nice to know what sort of error occurred, so an external variable erma is provided for that
purpose. Refer to erma(2) in the HP-UX Reference for a detailed listing of the possible values
of erma. Erma is not cleared when no error occurs, so it should not be used unless an error
has occurred. Error names are preferred. Avoid using actual error numbers contained in the file
/ usr / include / erma. h.

Error names can be used by a program, for example, to determine whether an attempt to open a
file failed because it did not exist or because the user lacked permission to read it. Perhaps more
commonly, you may want to print the reason for failure. The routine perror prints a message
associated with the value of erma. More generally, sys_erma is an array of character strings
that can be indexed by erma and printed by your program.

16 HP-UX Programming

Processes
It is often easier to use a program written by someone else than to invent one's own. This
section describes how to execute a program from within another.

The "System" Function
The easiest way to execute a program from another is to use the standard library routine system.
System takes one argument, a command string exactly as typed at the terminal (except for the
newline at the end) and executes it. For instance, to time-stamp the output of a program,

maine)
{

system("date") ;
/* rest of processing */

}

If the command string has to be built from pieces, the in-memory formatting capabilities of sprintf
may be useful.

Remember that getc and putc normally buffer their input; terminal I/O will not be properly
synchronized unless this buffering is defeated. For output, use fflush; for input, see setbuf in the
appendix.

Low-Level Process Creation - Execl and Execv
If you're not using the standard library, or if you need finer control over what happens, you will
have to construct calls to other programs using the more primitive routines that the standard
library's system routine is based on.

The most basic operation is to execute another program without returning, by using the routine
exec!. To print the date as the last action of a running program, use

execl("/bin/date". "date". NULL);

The first argument to exec! is the file name of the command; you have to know where it is
found in the file system. The second argument is conventionally the program name (that is,
the last component of the file name), but this is seldom used except as a place-holder. If the
command takes arguments, they are strung out after this; the end of the list is marked by a
NULL argument.

The exec! call overlays the existing program with the new one, runs that, then exits. There is
no return to the original program if exec succeeds.

HP-UX Programming 17

More realistically, a program might fall into two or more phases that communicate only through
temporary files. Here it is natural to make the second pass simply an execl call from the first.

The one exception to the rule that the original program never gets control back occurs when
there is an error, for example if the file can't be found or is not executable. If you don't know
where date is located, say

execl("/bin/date", "date", NULL);
execl("/usr/bin/date", "date", NULL);
fprintf(stderr, "Someone stole 'date'\n");

A variant of execl called execv is useful when you don't know in advance how many arguments
there are going to be. The call is

execv(filename, argp);

where argp is an array of pointers to the arguments; the last pointer in the array must be NULL
so execv can tell where the list ends. As with execl, filename is the file in which the program is
found, and argp[O] is the name of the program. (This arrangement is identical to the argv array
for program arguments.)

Neither of these routines provides the niceties of normal command execution. There is no
automatic search of multiple directories - you have to know precisely where the command is
located. Nor do you get the expansion of metacharacters like <, >, *, ?, and [] in the argument
list. If you want these, use execl to invoke the shell sh, which then does all the work. Construct
a string commandline that contains the complete command as it would have been typed at the
terminal, then say

execl("/bin/sh", "sh", II_ C", commandline, NULL);

The shell is assumed to be at a fixed place, /bin/sh. Its argument -c says to treat the next
argument as a whole command line, so it does just what you want. The only problem is in
constructing the right information in commandline.

18 HP-UX Programming

Control of Processes - Fork and Wait
So far what we've talked about isn't really all that useful by itself. Now we will show how to
regain control after running a program with execl or execv. Since these routines simply overlay
the new program on the old one, to save the old one requires that it first be split into two copies;
one of these can be overlaid, while the other waits for the new, overlaying program to finish.
The splitting is done by a routine called fork:

proc_id = fork();

splits the program into two copies, both of which continue to run. The only difference between
the two is the value of proc_id, the "process id." In one of these processes (the "child"), proc_id
is zero. In the other (the "parent"), proc_id is non-zero; it is the process number of the child.
Thus the basic way to call, and return from, another program is

if (forkO == 0)
execl("/bin/sh", "sh", "-C", cmd, NULL); /* in child */

And in fact, except for handling errors, this is sufficient. The fork makes two copies of the
program. In the child, the value returned by fork is zero, so it calls execl which does the
command and then dies. In the parent, fork returns non-zero so it skips the execl. (If there is
any error, fork returns -1).

More often, the parent wants to wait for the child to terminate before continuing itself. This can
be done with the function wait:

int status;

if (forkO == 0)
execl(. . .);

wait(&status);

This still doesn't handle any abnormal conditions, such as a failure of the execl or fork, or the
possibility that there might be more than one child running simultaneously. (The wait returns the
process id of the terminated child, if you want to check it against the value returned by fork.)
Finally, this fragment doesn't deal with any funny behavior on the part of the child (which is
reported in status). Still, these three lines are the heart of the standard library's system routine,
which we'll show in a moment.

The status returned by wait encodes in its low-order eight bits the system's idea of the child's
termination status; it is 0 for normal termination and non-zero to indicate various kinds of
problems. The next higher eight bits are taken from the argument of the call to exit which
caused a normal termination of the child process. It is good coding practice for all programs to
return meaningful status.

HP-UX Programming 19

When a program is called by the shell, the three file descriptors 0, 1, and 2 (stdin, stdout, and
stderr) are set up pointing at the right files, and all other possible file descriptors are available
for use. When the program called by the shell calls another program, correct etiquette suggests
making sure the same conditions hold. Open files are not affected in any way by fork or exec
calls unless the close-on-exec flag has been set (see fcntl(2) in the HP-UX Reference}. If the parent
is buffering output that must come out before output from the child, the parent must flush its
buffers before the execl. Conversely, if a caller buffers an input stream, the called program will
lose any information that has been read by the caller.

Pipes
A pipe is an I/O channel intended for use between two cooperating processes: one process
writes into the pipe, while the other reads. The system looks after buffering the data and
synchronizing the two processes. Most pipes are created by the shell, as in

Is I pr

which connects the standard output of Is to the standard input of pr. Sometimes, however, it is
most convenient for a process to set up its own plumbing; in this section, we will illustrate how
the pipe connection is established and used.

The system call pipe creates a pipe. Since a pipe is used for both reading and writing, two file
descriptors are returned; the actual usage is like this:

int fd[2];

stat = pipe(fd);
if (stat == -1)

1* there was an error . . . *1

Fd is an array of two file descriptors, where fd[O] is the read side of the pipe and fd[1] is for
writing. These can be used in read, write and close calls just like any other file descriptors.

If O_NDELAY is not set (see read(2) and write(2) in HP-UX Reference) and a process reads a
pipe which is empty, the process will wait until data arrives; if a process writes into a pipe that
is too full, the process will wait until the pipe empties somewhat. If the write side of the pipe is
closed, a subsequent read will encounter end of file. If O_NDELAY is set, read and write both
return immediately with the value 0.

20 HP-UX Programming

To illustrate the use of pipes in a realistic setting, let us write a function called popen(cmd, mode},
which creates a process cmd (just as system does), and returns a file descriptor that will either
read or write that process, according to mode. That is, the call

fout = popen("pr". WRITE);

creates a process that executes the pr command; subsequent write calls using the file descriptor
fout will sehd their data to that process through the pipe.

Popen first creates the the pipe with a pipe system call; it then forks to create two copies of
itself. The child decides whether it is supposed to read or write, closes the other side of the pipe,
then calls the shell (via execl) to run the desired process. The parent likewise closes the end
of the pipe it does not use. These closes are necessary to make end-of-file tests work properly.
For example, if a child that intends to read fails to close the write end of the pipe, it will never
see the end of the pipe file, just because there is one writer potentially active.

#include <stdio.h>

#define READ 0
#define WRITE 1
#define tst(a. b) (mode == READ? (b) (a»
static int popen_pid;

popen(cmd. mode)
char *cmd;
int mode;
{

int p[2] ;

if (pipe(p) < 0)
return(NULL);

if «popen_pid = fork(» == 0) {
close(tst(p[WRITE]. p[READ]»;
close(tst(O. 1»;
dup(tst(p[READ]. p[WRITE]»;
close(tst(p[READ]. p[WRITE]»;
execl(II/bin/sh". "sh". "-c". cmd. 0);

_exit(1); /* disaster has occurred if we get here */

}

}
if (popen_pid == -1)

return(NULL);
close(tst(p[READ]. p[WRITE]»;
return(tst(p[WRITE]. p[READ]»;

HP-UX Programming 21

The sequence of closes in the child is a bit tricky. Suppose that the task is to create a child
process that will read data from the parent. Then the first close closes the write side of the
pipe, leaving the read side open. The lines

close(tst(O. 1»;
dup(tst (p [READ] . p[WRITE]»;

are the conventional way to associate the pipe descriptor with the standard input of the child.
The close closes file descriptor 0, that is, the standard input. dup is a system call that returns
a duplicate of an already open file descriptor. File descriptors are assigned in increasing order
and the first available one is returned, so the effect of the dup is to copy the file descriptor for
the pipe (read side) to file descriptor 0; thus the read side of the pipe becomes the standard
input. (Yes, this is a bit tricky, but it's a standard idiom.) Finally, the old read side of the pipe
is closed.

A similar sequence of operations takes place when the child process is supposed to write from
the parent instead of reading. You may find it a useful exercise to step through that case.

The job is not quite done, for we still need a function pclose to close the pipe created by popen.
The main reason for using a separate function rather than close is that it is desirable to wait
for the t~rmination of the child process. First, the return value from pclose indicates whether
the process succeeded. Equally important when a process creates several children is that only
a bounded number of unwaited-for children can ,exist, even if some of them have terminated;
performing the wait lays the child to rest. Thus:

#include <signal.h>

pclose(fd) 1* close pipe fd *1
int fd;
{

}

register r. (*hstat)(). (*istat)(). (*qstat)();
int status;
extern int popen_pid;

close(fd);
istat signal(SIGINT. SIG_IGN);
qstat = signal(SIGQUIT.SIG_IGN);
hstat = signal(SIGHUP. SIG_IGN);
while «r = wait(&status» != popen_pid && r != -1);
if (r == -1)

status = -1;
signal(SIGINT. istat);
signal(SIGQUIT. qstat);
signal(SIGHUP. hstat);
return(status);

22 HP-UX Programming

The calls to signal make sure that no interrupts, etc., interfere with the waiting process; this is
the topic of the next section.

The routine as written has the limitation that only one pipe can be open at once, because of the
single shared variable popen_pid; it really should be an array indexed by file descriptor. A popen

function, with slightly different arguments and return value is available as part of the standard
I/O library discussed below. As currently written, it shares the same limitation.

Signals - Interrupts and All That
This section is concerned with how to deal gracefully with signals from the outside world (like
interrupts), and with program faults. Since there's nothing very useful that can be done from
within C about program faults, which arise mainly from illegal memory references or from
execution of peculiar instructions, we'll discuss only the outside-world signals:

Interrupt

Quit

Hangup

Terminate

Sent when the Interrupt character is typed (user selectable, usually DEL);

Generated by the Quit character (user selectable, usually File Separator char­
acter obtained by ~);

Caused by hanging up the phone; and

Generated by the kill command.

Unless other arrangements have been made (see setpgrp(2) and signal(2)), when one of these
events occurs, the signal is sent to all processes that were started from the corresponding
terminal, terminating the process(es). In the quit case, a core image file is written for debugging
purposes.

The routine that alters the default action is called signal. It has two arguments: the first specifies
the signal while the second specifies how to treat it. The first argument is just a number code;
the second is an address consisting of either a function or a code requesting that the signal either
be ignored or that it be given the default action. The include file signal.h provides names for
the various arguments, and should always be included when signals are used. Thus,

#include <signal.h>

signal (SIGINT, SIG_IGN);

HP-UX Programming 23

causes interrupts to be ignored, while

signal (SIGINT. SIG_DFL);

restores the default action of process termination. In all cases, signal returns the previous value
of the signal catcher. The second argument to signal can be the name of a function (which has
to be declared explicitly if t~e compiler hasn't seen it already). In this case, the named routine
will be called when the signal occurs. Most commonly this facility is used to allow the program
to clean up unfinished business before terminating, for example to delete a temporary file:

#include <signal.h>

main()
{

}

int onintr 0 ;

if (signal (SIGINT. SIG_IGN) != SIG_IGN)
signal (SIGINT. onintr);

/* Process ... */

exit(O);

onintr(
{

}

unlink(tempfile);
exit(l);

Why the test and the double call to signal? Recall that signals like interrupt are sent to all
processes started from a particular terminal. Accordingly, when a program is to be run non­
interactively (started by & I t), the shell turns off interrupts for it so it won't be stopped by
interrupts intended for foreground processes. If this program began by announcing that all
interrupts were to be sent to the onintr routine regardless, that would undo the shell's effort to
protect it when run in the background.

The solution, shown above, is to test the state of interrupt handling, and to continue to ignore
interrupts if they are already being ignored. The code as written depends on the fact that signal

returns the previous state of a particular signal. If signals were already being ignored, the process
should continue to ignore them; otherwise, they should be caught.

24 HP-UX Programming

A more sophisticated program may wish to intercept an interrupt and interpret it as a request
to stop what it is doing and return to its own command-processing loop. Think of a text editor:
interrupting a long printout should not cause it to terminate and lose the work already done.
The outline of the code for this case is probably best written like this:

#include <signal.h>
#include <setjmp.h>
jmp_buf
sjbuf;

maine)
{

int (*istat)(). onintr();

istat = signal (SIGINT. SIG_IGN); /* save original status */
setjmp(sjbuf); /* save current stack position */
if (istat != SIG_IGN)

signal (SIGINT. onintr);

/* main processing loop */
}

onintr(
{

printf("\nlnterrupt\n");
longjmp(sjbuf) ; /* return to saved state */

}

The include file setjmp.h declares a type jmp_buf which is an object in which the state can be
saved. sjbuf is an object of type jmp_buf where the setjmp routine saves the state of things.
When an interrupt occurs, a call is forced to the onintr routine, which can print a message, set
flags, or whatever. Longjmp takes as argument an object containing information placed there by
setjmp, and restores control to the location after the call to setjmp, such that control (and the
stack level) pop back to the place in the main routine where the signal is set up and the main
loop entered. Note, incidentally, that the signal gets set again after an interrupt occurs. This is
necessary because most signals are automatically reset to their default action when they occur.

Some programs that want to detect signals simply can't be stopped at an arbitrary point, such as
while updating a linked list. If the routine called on occurrence of a signal sets a flag then returns
instead of calling exit or /ongjmp, execution continues exactly where the interrupt occurred. The
interrupt flag can then be tested later.

HP-UX Programming 25

There is one difficulty associated with this approach. Suppose the program is reading the
terminal when the interrupt is sent. The specified routine is duly called; it sets its flag and
returns. If it were really true, as we said above, that "execution resumes at the exact point it
was interrupted", the program would continue reading the terminal until the user typed another
line. This behavior might well be confusing, since the user might not know that the program
is reading; he presumably would prefer to have the signal take effect instantly. The method
chosen to resolve this difficulty is to terminate the terminal read when execution resumes after
the signal, returning an error code which indicates what happened.

Thus, programs that catch and resume execution after signals should be prepared for "errors"
caused by interrupted system calls (the ones to watch out for are reads from a terminal, wait,
and pause). A program whose onintr program only sets in tflag , resets the interrupt signal, then
returns, should usually include code like the following when it reads the standard input:

if (getchar() == EOF)
if (intflag)

/* EOF caused by interrupt */
else

/* true end-of-file */

Another aspect of error handling that must be dealt with is associated with programs where the
user has elected to catch an asynchronous signal such as an interrupt or quit signal, and the signal
occurs during a system call, producing the error EINTR. If execution is resumed after processing
the signal, it will appear as if the interrupted system call returned the EINTR error unless the
system call is restarted. Refer to sigvector(2) in the HP-UX Reference for more information.

A final subtlety to keep in mind becomes important when signal-catching is combined with
execution of other programs. Suppose a program catches interrupts, and also includes a method
(like "!" in the editor) whereby other programs can be executed. Then the code should look
something like this:

if (fork() == 0)
execl(. . .);

signal (SIGINT, SIG_IGN);
wait(&status);
signal (SIGINT , onintr);

26 HP-UX Programming

/* ignore interrupts */
/* until the child is done */
/* restore interrupts */

Why is this? Again, it's not obvious but not really difficult. Suppose the program you call
catches its own interrupts. If you interrupt the subprogram, it will get the signal and return to
its main loop, and probably read your terminal. But the calling program will also pop out of its
wait for the subprogram and read your terminal. Having two processes reading your terminal is
very unfortunate, since the system figuratively flips a coin to decide who should get each line of
input. A simple way out is to have the parent program ignore interrupts until the child is done.
This reasoning is reflected in the standard I/O library function system:

#include <signal.h>

system(s)
char *s;

/* run command string s */

{

}

int status, pid, w;
register int (*istat)(), (*qstat)();

if «pid = fork(» == 0) {
execl(lI/bin/sh ll , IIshll, II-ell, s, 0);
_exit(127);

}

istat = signal (SIGINT, SIG_IGN);
qstat = signal (SIGQUIT, SIG_IGN);
while «w = wait(&status» != pid && w != -1)

if (w == -1)
status = -1;

signal (SIGINT, istat);
signal (SIGQUIT, qstat);
return(status) ;

As an aside on declarations, the function signal obviously has a rather strange second argument.
It is in fact a pointer to a function delivering an integer, and this is also the type of the signal
routine itself. The two values SIG_IGN and SIG_DFL have the right type, but are chosen so
they coincide with no possible actual functions.

HP-UX Programming 27

Appendix - The Standard 1/0 Library
The standard I/O library was designed with the following goals in mind.

• It must be as efficient as possible, both in time and in space, so that there will be no
hesitation in using it no matter how critical the application.

• It must be simple to use, and also free of the magic numbers and mysterious calls whose
use mars the understandability and portability of many programs using older packages.

• The interface provided should be applicable on all machines, whether or not the programs
which implement it are directly portable to other systems, or to machines other than the
one upon which the program was written.

General Usage
Each program using the library must have the line

#include <stdio.h>

which defines certain macros and variables. The routines are in the normal C library, so no
special library argument is needed for loading. All names in the include file intended only for
internal use begin with an underscore (J to reduce the possibility of collision with a user name.
The names intended to be visible outside the package are

stdin

stdout

stderr

EOF

NULL

The name of the standard input file

The name of the standard output file

The name of the standard error file

is actually -1, and is the value returned by the read routines on end-of-file or
error.

is a notation for the null pointer, returned by pointer-valued functions to indicate
an error

FILE expands to struct iob and is a useful shorthand when declaring pointers to
streams.

28 HP-UX Programming

BUFSIZ

getc,

getchar,
putc,
putchar,
feof, ferror,
fi/eno

is a number (viz. 512) of the size suitable for an I/O buffer supplied by the user.
See setbuf, below.

are defined as macros. Their actions are described below; they are mentioned
here to point out that it is not possible to redeclare them and that they are not
actually functions; thus, for example, they cannot have breakpoints set on them.
Also, watch out for side-effects if an expression is used as an argument because it
might get evaluated more than once, producing rather bizarre (and very incorrect)
results.

The routines in this package offer the convenience of automatic buffer allocation and output
flushing where appropriate. The names stdin, stdout, and stderr are, in effect, constants and
cannot be assigned to.

Calls
FILE *fopen«filename>, <type» char *<filename>, *<type>;

opens the file and, if needed, allocates a buffer for it. <filename> is a character
string specifying the name. <type> is a character string (not a single character).
It can be "r", "w", or "a" to indicate intent to read, write, or append. The value
returned is a file pointer. If it is NULL, the attempt to open failed.

FILE *freopen(filename, type, ioptr) char *filename, *type; FILE *ioptr;
closes the stream named by ioptr, if necessary, then reopens it as if by fopen. If
the attempt to open fails, NULL is returned. Otherwise ioptr, now refers to the
new file. Often the reopened stream is stdin or stdout.

FILE *fdopen (fildes, type) int fildes; char *type;
associates the stream named by ioptr with a file descriptor obtained from open,
dup, creat, or pipe(2} which open files but do not return pointers to a stream FILE
structure ioptr. Streams are required input for several library routines described
in Section 3 of the HP-UX Reference.

int getc(ioptr) FILE *ioptr;
returns the next character from the stream named by <ioptr>, which is a pointer
to a file such as returned by fopen, or the name stdin. The integer EOF is returned
on end-of-file or when an error occurs. The null character is a legal character.

int fgetc(ioptr) FILE *ioptr;
acts like getc but is a genuine function, not a macro, so it can be pointed to,
passed as an argument, etc.

HP-UX Programming 29

putc(c, ioptr) FILE *ioptr;
writes the character c on the output stream named by ioptr, which is a value
returned from fopen or perhaps stdout or stderr. The character is returned as
value, but EOF is returned on error.

fputc(c, ioptr) FILE *ioptr;
acts like putc but is a genuine function, not a macro.

fclose(ioptr) FILE *ioptr;
closes the file corresponding to ioptr after any buffers are emptied. Any buffering
allocated by the I/O system is freed. fdose is automatic on normal termination
of the program.

fflush(ioptr) FILE *ioptr;
writes out any buffered information on the (output) stream named by ioptr. Output
files are normally buffered if and only if they are not directed to the terminal;
however, stderr always starts off unbuffered and remains so unless setbuf is used,
or unless it is reopened.

exit(errcode);
terminates the process and returns its argument as status to the parent. This is a
special version of the routine which calls !flush for each output file. To terminate
without flushing, use _exit.

feof(ioptr) FILE *ioptr;
returns non-zero when end-of-file has occurred on the specified input stream.

ferror(ioptr) FILE *ioptr;

getchar();

putchar(c);

returns non-zero when an error has occurred while reading or writing the named
stream. The error indication lasts until the file has been closed.

is identical to getc (stdin).

is identical to putc (c, stdout).

char *fgets(s, n, ioptr) char *s; FILE *ioptr;
reads up to n-l characters from the stream ioptr into the character pointer s.
The read terminates with a newline character. The newline character is placed
in the buffer followed by a null character. Fgets returns the first argument, or
NULL if error or end-of-file occurred.

30 HP-UX Programming

fputs(s. ioptr) char *s; FILE *ioptr;
writes the null-terminated string (character array) s on the stream ioptr. No
newline is appended. No value is returned.

ungetc(c. ioptr) FILE *ioptr;
pushes the argument character c back on the input stream named by ioptr. Only
one character can be pushed back.

printf(format. al) char *format;
fprintf(ioptr. format. al) FILE *ioptr; char *format;
sprintf(s. format. al. .)char *s. *format;

printf writes on the standard output. fprintf writes on the named output stream.
sprintf puts characters in the character array (string) named by s. The specifica­
tions are as described in section printf (3) of the HP-UX Reference.

scanf(format. al •...) char *format;
fscanf(ioptr.\ format.\ al •...) FILE *ioptr; char *format;
sscanf(s. format. al. .) char *s. *format;

scanf reads from the standard input. fscanf reads from the named input stream.
sscanf reads from the character string supplied as s. Scanf reads characters,
interprets them according to a format, and stores the results in its arguments.
Each routine expects as arguments a control string format, and a set of arguments,
each of which must be a pointer, indicating where the converted input should
be stored.

Scanf returns as its value the number of successfully matched and assigned input
items. This can be used to decide how many input items were found. On end
of file, EOF is returned; note that this is different from 0, which means that the
next input character does not match what was called for in the control string.

fread(ptr. sizeof(*ptr). nitems. ioptr) FILE *ioptr;
reads nitems of data beginning at ptr from file ioptr. No advance notification that
binary 1/0 is being done is required; when, for portability reasons, it becomes
required, it will be done by adding an additional character to the mode-string on
the fopen call.

fwrite(ptr. sizeof(*ptr). nitems. ioptr) FILE *ioptr;
like fread, but in the other direction.

rewind(ioptr) FILE *ioptr;
rewinds the stream named by ioptr. It is not very useful except on input, since a
rewound output file is still open only for output.

HP-UX Programming 31

system(string) char *string;
string is executed by the shell as if typed at the terminal.

getw(ioptr) FILE *ioptr;
returns the next 32-bit word from the input stream named by ioptr. EOF is
returned on end-of-file or error, but since this a perfectly good integer feof and
ferror should be used.

putw(w, ioptr) FILE *ioptr;
writes the integer w on the named output stream.

setbuf(ioptr, buf) FILE *ioptr; char *buf;
setbuf can be used after a stream has been opened but before I/O has started.
If buf is NULL, the stream will be unbuffered. Otherwise the buffer supplied will
be used. It must be a character array of sufficient size: char buf [BUFSIZ] ;

int setvbuf(ioptr, buf, type, size) FILE *ioptr; char *buf; int type, size;
setvbuf can be used after a stream has been opened but before I/O has started.
Type defines the type of buffer to be used: fully buffered, line buffered, or
completely unbuffered; while size defines the buffer size. See setbuf(3S) in HP­

UX Reference for more information.

fileno(ioptr) FILE *ioptr;
returns the integer file descriptor associated with the file.

fseek(ioptr, offset, ptrname) FILE *ioptr; long offset;
adjusts the location of the next byte in the stream named by ioptr. offset is a long
integer. If ptrname is 0, the offset is measured from the beginning of the file; if
ptrname is 1, the offset is measured from the current read or write pointer; if
ptrname is 2, the offset is measured from the end of the file. The routine accounts
properly for any buffering. (When this routine is used on HP-UX systems, the
offset must be a value returned from ftell and the ptrname must be 0).

long ftell(ioptr) FILE *ioptr;
returns the byte offset (measured from the beginning of the file) associated with
the named stream. Any buffering is properly accounted for. (On HP-UX systems
the value of this call is useful only for handing to fseek, so as to position the file
to the same place it was when ftell was called.)

getpw(uid, buf) char *buf;
searches the password file for the given integer user ID. If an appropriate line is
found, it is copied into the character array buf, and ° is returned. If no line is
found corresponding to the user ID then 1 is returned.

32 HP-UX Programming

char *malloc(num);
allocates num bytes. The pointer returned is sufficiently well aligned to be usable
for any purpose. NULL is returned if no space is available.

char *calloc(num. size);
allocates space for num items each of size size. The space is guaranteed to be
set to 0 and the pointer is sufficiently well aligned to be usable for any purpose.
NULL is returned if no space is available .

cfree(ptr) char *ptr;
Space is returned to the pool used by calloc. Disorder can be expected if the
pointer was not obtained from calloc.

The following are macros whose definitions can be obtained by including <ctype.h>.

isalpha(c)

isupper(c)

islower(c)

isdigit(c)

isspace(c)

ispunct(c)

isalnum(c)

isprint(c)

iscntrl(c)

isascii(c)

toupper(c)

tolower(c)

returns non-zero if the argument is alphabetic.

returns non-zero if the argument is uppercase alphabetic.

returns non-zero if the argument is lowercase alphabetic.

returns non-zero if the argument is a digit.

returns non-zero if the argument is a spacing character such as tab, space
(blank), newline, vertical tab, form-feed, or other white-space character.

returns non-zero if the argument is any punctuation character, i.e., not a space,
letter, digit or control character.

returns non-zero if the argument is a letter or a digit.

returns non-zero if the argument is printable-a letter, digit, or punctuation
character.

returns non-zero if the argument is a control character.

returns non-zero if the argument is an ASCII character, i.e., less than octal
0200.

returns the uppercase character corresponding to the lowercase letter c.

returns the lowercase character corresponding to the uppercase letter

HP-UX Programming 33

Notes

34 HP-UX Programming

Index

a
access, file .. 5
access mode, file .. 14
argc ... 2
argument count .. 2
arguments .. 2
argv ... 2

b
buffer flushing ... 8

c
cat .. 4
catching interrupts ... 27
child process ... 18
close ... 15
close sequences in child ,..................................... 22
closed pipe .. 20, 21
creat ... 13
ctype.h .. 33

d
dup .. 22

e
empty pipe .. 20
end-of-file returns ... 6
errno ... 16
errno.h .. 16
error names .. 16
error processing ... 16
exec .. 20
execl ... 17, 18, 21
execute without returning .. 17

Index 35

execv .. 18
existing file truncated by open .. 14
exit ... 4, 8, 18, 25
exit calls fclose 8
_exit to terminate parent and child .. 8

f
failure of fork or execl .. 18
fclose 8
fflush ... 9, 17
fgets .. 9
file access .. 5
file access mode ... 14
file access, random ... 15
file descriptor ... 10
file pointer ... 5, 10
file rewind ... 15
file treated as array .. 15
files open simultaneously .. 15
fopen ... 5, 6, 13
fork .. 18, 20, 21
fp ~ .. 5, 9
fprintf ... 7
fputs .. 9
fscanf .. 9

9
getc .. 6,9, 17
getchar .. 3

h
hangup signal ... 23

.
I

interrupt catching .. 27
interrupt signal .. 23
interrupts .. 23
intflg ... 26
I/O calls ... 29

36 Index

I/O library ... 5, 28
I/O macros in ctype.h .. 33
I/O redirection .. 11

I
library, standard I/O .. 5
longjmp ... 25
low-level I/O ... 10
Iseek ... 15

m
main .. 2
meta character expansion not available .. 18

o
offset, used in random file access .. 15
onintr routine .. 24, 26
open ... 13
open files, simultaneous ... 15
opening files .. 5
O_RDONLY flag .. 13
O_RDWR flag .. 13
origin for random file access .. 15
O_WRONLY flag .. 13

p
parent process .. 18
pause ... 26
pclose, close pipe•...................................... 22
perror, print error ... 16
pipes ... 20
popen, open pipe ... 21, 23
popen_pid ... 23
printf .. 3
process control .. 18
proc_id ... 18
program arguments ... 2
push back characters .. 9
putc .. 6, 8, 17
putchar .. 3

Index 37

q
quit signal ... 23

r
random file access ... 15
re-use of file descriptors ... 15
read ... 11,20
redirection (file substitution) ... 3
rewind file ... 15

5
scanf .. 3
setbuf ... 17
setjmp.h .. 25
setpgrp(2) ... 23
signal ... 23
signal command arguments ... 27
signal(2) ... 23
signal. h ... 23
signals ... 23-27
sigvector(2) .. 26
simultaneous open files 15
sprintf .. 9, 17
sscanf ... 9
standard error ... 10, 20
standard input ... 3, 10, 20
standard I/O library ... 5
standard output .. 3, 10, 20
status returned by wait .. 18
stderr ... 6, 8, 20
stderr file descriptor ... 10, 20
stdin ... 6, 20
stdin file descriptor .. 10, 20
stdio.h ... 5
stdout .. 6,. 20
stdout file descriptor ; .. 10, 20
sub-process, exit as a .. 8
sys_errno, error name string array ... 16
system function ... 1 7

38 Index

t
terminal I/O .. 10
terminate signal 23

u
ungetc ... 9
unlink .. 15

w
wait .. 18, 22, 26
wait for child process ... 18
wc .. 5
word count .. 5
write .. 11, 20

Index 39

Table of Contents
Using C Library Routines
Part 1: Standard Input/Output Routines

Input/Output Using Stdin and Stdout .. 5
Single-character Input/Output 5
String Input/Output. .. 6
Formatted Input/Output .. 7

Input/Output from/to Strings. .. 21
Reading Data from a String .. 21
Writing Data Into a String .. 24

Input/Output Using Ordinary Files. .. 26
Opening Ordinary Files 26
Single-Character Input/Output .. 29
Character Push-Back .. 32
String Input/Output. .. 33
Formatted Input/Output ... 35
Binary Input/Output .. 36

Stream Status and Control Routines. .. 42
Stream Status Inquiry Routines .. 42
Re-positioning Stream I/O Operations .. 45
Stream Control Routines .. 50
Converting Between File Pointers and File Descriptors 55

Inter-Process Communication .. 58

Part 2: Math Routines
Absolute Value Functions. .. 62
Power, Square Root, and Logarithmic Functions. .. 63
Trigonometric Functions ... 64
Miscellaneous Functions. .. 68

Calculating Upper and Lower Bounds. .. 68
Calculating Remainders· .. 69
Calculating A Hypotenuse. .. 70
Generating Random Numbers 71
Floating-Point Exponentiation Routines. .. 72

Part 3: String Manipulations
Character Conversion and Classification. .. 73

Converting Between Uppercase and Lowercase 73
Character Classification .. 74

String Manipulation .. 75
Concatenating Strings .. 75
Copying Strings .. 75
Comparing Strings. .. 77
Finding the Length of a String .. 79
Finding Characters in Strings .. 79

Miscellaneous String Routines ... 81
Finding Characters Common to Two Strings. .. 81
Breaking a String into Tokens .. 82

Part 4: Date and Time Manipulation 83

Using C Library Routines

The purpose of this tutorial is to illustrate the use of the most commonly used library routines
described in Section 3 of the HP-UX Reference manual. Examples are included to demonstrate
programming techniques.

This article assumes that you have a working knowledge of the C programming language. No
attempt is made here to explain or teach C programming techniques, other than those that are
relevant to a particular library routine.

Material is presented in three sections, each dealing with the following topics in the order listed:

• Standard Input/Output Routines,

• Math Routines, including trigonometric and other functions, and

• String Manipulation Routines.

Using C Library Routines 1

2 Using C Library Routines

Part 1:
Standard Input/Output Routines
There are more library routines in this category than in any other. Described under this heading
are routines that perform all kinds of input and output, from single characters to entire strings.
Also described are routines that adjust I/O buffering, routines that enable input from or output
to files, and routines that enable random access to data. These routines require that the include
file stdio.h be #included in C programs containing calls to them.

The standard I/O routines are inseparably linked with files. A file must be opened before its
contents can be used. Three "files" are automatically opened for you by the system. Including
stdio.h in your program assigns buffering to them. These three "files" are the standard input,
standard output, and standard error files. Their names are stdin, stdout, and stderr, respectively.

Actually, it is more accurate to think of these "files" as pipes connecting two points. Each pipe
accepts data at one end, and transfers the data to its destination at the other end. These pipes
have only limited ability to store data. Once a certain number of bytes have been written into
the pipe, data must be read from the other end before the pipe can accept more data. Writing
data into a pipe is analogous to pumping water into a pipeline. The pipeline is able to hold
some water, but if the valve at the receiving end of the pipe is shut, the pipeline is soon unable
to hold any more water. Opening the valve is analogous to reading data from the pipe. Once
water has been removed from the pipeline, more water can be pumped in at the source.

Once a certain volume of water has been allowed to flow out of a pipeline, that same water
no longer exists in the pipeline. This is also true for data that has been received from stdin,
stdout, and stderr. Reading data from stdin, for instance, removes that data from stdin. You
can see that stdin, stdout, and stderr are very different from ordinary files. Not only can they
store small amounts of data, but that data exists only until it is read (unless it is "pushed back"
-- see Character Push-Back later in this article).

Stdin is opened for reading. This means that your program can only receive data from stdin; it
cannot write data into it. By default, stdin's source of data is your terminal's keyboard. Thus,
whatever you type at your keyboard provides the data that flows through stdin and becomes
available to your program at the other end. By default, stdin is buffered via a buffer containing
exactly BUFSIZ bytes, where BUFSIZ is a constant defined in stdio.h. For Series 200 and
Series 500 computers, BUFSIZ is 1024. Due to terminal driver characteristics, data you type
in at your keyboard is not available to a program until you press I RETURN I (or its equivalent).

Using C Library Routines 3

Stdout is opened for writing, which means that your program is the source of data for stdont.
Your program cannot, however, read data from stdout. By default, the destination of stdout is
your terminal's screen. Thus, data fed into stdout appears on your screen. Stdout is typically
used for all output that arises from successful execution of a program (status reports, lists of
tasks being performed, etc.). Like stdin, stdont is buffered via a buffer containing BUFSIZ bytes.

Stderr is also opened for writing, allowing your program to feed data into it, but disallowing
reading. Just like stdout, stderr's destination is your terminal's screen by default. Stderr is
typically used to output data which arises from an erroneous condition in a program, such as
error messages, warnings, etc. Stderr is unbuffered by default, which means that data written
to stderr is transferred to its destination one byte at a time.

The buffering for these pipes, as well as for any open file, can be modified - see the Stream
Status and Control Routines section later in this tutorial.

Of course, your program would be severely limited in its I/O capabilities if it had only these three
pipes to work with. Therefore, ordinary text files can be opened for reading, or created/opened
for writing, appending, or both reading and writing. Directories can also be opened, but only for
reading. These features are discussed later in this article. For now, the use of stdin and stdont
is described (stderr is also left for later discussion).

4 Using C Library Routines

Input/Output Using Stdin and Stdout
This section describes those routines which are capable of I/O using stdin and stdout only. The
routines discussed are getchar and putchar (single character I/O), gets and puts (string I/O), and
scan! and print! (formatted I/O of all types).

Single-character Input/Output
This section describes the two basic input and output routines, getchar and putchar. Getchar is
a macro defined in stdio.h which reads one character from stdin. Similarly, putchar is also a
macro defined in stdio.h. Putchar writes one character on stdout.

As an example, consider the following program, which simply reads stdin and echos whatever
it finds to stdout. The program terminates when it receives an at-sign (@) from stdin.

#include <stdio.h>
mainO
{

}

int c;

while«c = getchar(» != '~')

putchar(c);
putchar('\n') ;

Why is c declared an int instead of a char? For most applications, char works fine. In certain
cases, however, sign extension, bit shifting, and similar operations cause strange results with
chars. Therefore, int is used here, and in all following examples, to be safe.

The final putchar statement in the program is used to output a new-line so that your shell prompt
appears at the beginning of a new line, instead of at the end of the last line of output. Type it
in and give it a try! Remember that your input is not available to the program until you press
I RETURN I.

Using C Library Routines 5

Getchar and putchar are most useful in filters - programs that accept data and modify it in some
way before passing it on. Suppose you want to write a program that puts parentheses around
each vowel encountered in the input. It's easy to do with these routines:

#include <stdio.h>
main()
{

int c;

while«c = getchar(» != '\n') {

}

if(vowel(c» {
putchar('(');
putchar(c);
putchar(') ') ;

}else
putchar(c);

vowel(c)
char c;
{

}

if(c=='a' I I c=='A' I I c=='e' I I c=='E' I I c=='i' I I c=='!'
II c=='o' II c=='O' II c=='u' II c=='U')

return(l);
else

return(O);

The vowel test is placed in the function vowel, since it tends to clutter up the main program.
This program terminates when it encounters a new-line.

String Input/Output
The gets function reads a string from stdin and stores it in a character array. The string is
terminated by a new-line in the input, which gets replaces with a NULL character in the array.
Its companion function, puts, copies a string from a character array to stdout. The string is
terminated by a NULL character in the array, which puts replaces with a new-line in the output.

The simple "echo" program from the last section can be rewritten using gets and puts.

#include <stdio.h>
mainO
{

}

char line [80] , *gets();

while«gets(line» != NULL)
puts(line);

6 Using C Library Routines

This program, as written, runs forever. To terminate it, press I BREAK I (or its equivalent). Later,
when string comparison and string length routines are introduced, an intelligent termination
condition can be written for this program.

Formatted Input/Output
The scanf and printf routines are powerful tools enabling you to read and write data in formatted
form, respectively.

Scanf
Scanf is the formatted-input library routine. Its syntax is:

scanf (format, [item[, item ... lD ;

where format is a character pointer to a character string (or the character string itself enclosed
in double quotes), and item is the address of a variable.

The purpose of the format is to specify how the data to be read is presented on stdin, and what
types of data are found there. The format consists of two things: conversion specifications, and
literal characters.

Conversion Specifications
A conversion specification is a character sequence which tells scanf how to interpret the data
received at that point in the input. For example, if a conversion specification says "treat the
next piece of data as a decimal integer", then that data is interpreted and stored as a decimal
integer.

In the format, a conversion specification is introduced by a percent sign (%), optionally followed
by an asterisk (*) (called the assignment suppression character), optionally followed by an integer
value (called the field width). The conversion specification is terminated by a character specifying
the type of data to expect. These terminating characters are called conversion characters.

When a conversion specification is encountered in a format, it is matched up with the corre­
sponding item in the item list. The data formatted by that specification is then stored in the
location pointed to by that item. For example, if there are four conversion specifications in a
format, the first specification is matched up with the first item, the second specification with the
second item, and so on.

Using C Library Routines 7

The number of conversion specifications in the format is directly related to the number of items
specified in the item list. With one exception, there must be at least as many items as there
are conversion specifications in the format. If there are too few items in the item list; an error
occurs; if there are too many, the excess items are simply ignored. The one exception occurs
when the assignment suppression character (*) is used. If an asterisk occurs immediately after
the percent sign (before the field width, if any), then the data formatted by that conversion
specification is discarded. No corresponding item is expected in the item list. This is useful for
skipping over unwanted data in the input.

Conversion Characters
There are eight conversion characters available. Three of them are used to format integer data,
three are used to format character data, and two are used for floating-point data.

The integer conversion characters are:

d a decimal integer is expected;

o an octal integer is expected;

x a hexadecimal integer is expected;

The character conversion characters are:

c a single character is expected;

s a character string is expected;

a character string is expected;

The floating-point conversion characters are:

e, f a floating-point number is expected;

8 Using C Library Routines

Integer Conversion Characters
The d, 0, and x conversion characters read characters from stdin until an inappropriate character
is encountered, or until the number of characters specified by the field width, if given, is exhausted
(whichever comes first).

For d, an inappropriate character is any character except +, -, and 0 thru 9. For 0, an
inappropriate character is any character except +, -, and 0 thru 9. That's right - 8 and 9
are allowed in octal numbers! If you enter, say, 1294 to be interpreted by the 0 conversion
character, it still interprets the entire number as octal, and converts the digits to the octal digit
range. Thus, 1294 actually gets stored as 1314 (octal). For x, an inappropriate character is
any character except +, -, 0 thru 9, and the characters a - f and A thru F. Note that negative
octal and hexadecimal values are stored in their 2's complement form with sign extension. Thus,
they may look unfamiliar if you print them out later (using print! - see below).

These integer conversion characters can be capitalized or preceded by a lower-case L (I) to
indicate that a long int should be expected rather than an into They can also be preceded by h
to indicate a short into The corresponding items in the item list for these conversion characters
must be pointers to integer variables of the appropriate length.

Character Conversion Characters
The c conversion character reads the next character from stdin, no matter what that character
is. The corresponding item in the item list must be a pointer to a character variable. If a field
width is specified, then the number of characters indicated by the field width are read. In this
case, the corresponding item must refer to a character array large enough to hold the characters
read.

Note that strings read using the c conversion character are not automatically terminated with
a NULL character in the array. Since all C library routines which utilize strings assume the
existence of a NULL terminator, be sure you add the NULL character yourself. Otherwise,
library routines are not able to tell where the string ends, and you'll get puzzling results.

The s conversion character reads a character string from stdin which is delimited by one or
more space characters (blanks, tabs, or new-lines). If no field width is given, the input string
consists of all characters from the first non-space character up to (but not including) the first
space character. Any initial space characters are skipped over. If a field width is given, then
characters are read, beginning with the first non-space character, up to the first space character,
or until the number of characters specified by the field width is reached (whichever comes first).
The corresponding item in the item list must refer to a character array large enough to hold the
characters read, plus a terminating NULL character which is added automatically.

Using C Library Routines 9

An important point to remember about the s conversion character is that it cannot be made
to read a space character as part of a string. Space characters are always skipped over at
the beginning of a string, and they terminate reading whenever they occur in the string. For
example, suppose you want to read the first character from the following input line:

Hello, there!"

(10 spaces followed by "Hello, there!", the double quotes being added for clarity). If you use %c,
you get a space character. However, if you use %ls, you get "H" (the first non-space character
in the input).

The [conversion character also reads a character string from stdin. However, this character
should be used when a string is not to be delimited by space characters. The left bracket is
followed by a list of characters, and is terminated by a right bracket. If the first character
after the left bracket is a circumflex C), then characters are read from stdin until a character
is read which matches one of the characters between the brackets. If the first character is
not a circumflex, then characters are read from stdin until a character not occurring between
the brackets is found. The corresponding item in the item list must refer to a character array
large enough to hold the characters read, plus a terminating NULL character which is added
automatically.

The three string conversion characters provide you with a complete set of string-reading capabili­
ties. The c conversion character can be used to read any single character, or to read a character
string when the exact number of characters in the string is known beforehand. The s conversion
character enables you to read any character string which is delimited by space characters, and is
of unknown length. Finally, the [conversion character enables you to read character strings that
are delimited by characters other than space characters, and which are of unknown length.

Floating·Point Conversion Characters
The e and f conversion characters read characters from stdin until an inappropriate character is
encountered, or until the number of characters specified by the field width, if given, is exhausted
(whichever comes first).

Both e and f expect data in the folloWing form: an optionally signed string of digits (possibly
containing a decimal point), followed by an optional exponent field consisting of an E or e followed
by an optionally signed integer. Thus, an inappropriate character is any character except +, -,
0, 0 thru 9, E, or e.

These floating-point conversion characters may be capitalized, or preceded by a lower-case L
(I), to indicate that a double value is expected rather than a float. The corresponding items in
the item list for these conversion characters must be pointers to floating-point variables of the
appropriate length.

lOUsing C Library Routines

Literal Characters
Any characters included in the format which are not part of a conversion specification are literal
characters. A literal character is expected to occur in the input at exactly that point. Note that
since the percent sign is used to introduce a conversion specification, you must type two percent
signs (%%) to get a literal percent sign.

Examples. Suppose that you have to read the following line of data:

NAME: Joe Kool; AGE: 27; PROF: Elec Engr; SAL: 39550

To get the vital data, you must read two strings (containing spaces), and two integers. You also
have data that should be ignored, such as the semicolons and the identifying strings ("NAME:").
How do you go about reading this?

First, note that the identifying strings are always delimited by space characters. This suggests
use of the s conversion character to read them. Second, you can never know the exact sizes of
the NAME and PROF fields, but note that they are both terminated by a semicolon. Thus, you
can use [to read them. Finally, the d conversion character can be used to read both integers.
(Note: on 16-bit processors, you probably need to use a long int to read the salaries. Thus, D
or Id should be used instead of d.)

The following code fragment successfully reads this data:

char name [40] , prof [40] ;
int age, salary;

scanf ("%*s%* [] % [-;] %*c%*s%d%*c%*s%* [] % [-;] %*c%*s%d" ,name ,&age, \
prof,&salary) ;

For easier understanding, break the format into pieces:

%*s This reads the string "NAME:". Since an asterisk is given, the string is simply read
and discarded.

%*[] This gets rid of all blanks occurring between "NAME:" and the employee's name. Note
that this gets rid of one or more blanks, giving the format some flexibility.

%[";] This reads all characters from the current character up to a semicolon, and assigns the
characters to the array name.

%*c This gets rid of the semicolon left over after reading the name.

%*s This reads the next identifying string, "AGE:", and discards it.

Using C Library Routines 11

%d This reads the integer age given, and assigns it to age. The semicolon after the age
terminates %d, because that character is not appropriate for an integer value. Note
that the address of age is given in the item list (&age) instead of the variable name
itself. If this is not done, a memory fault occurs at run-time.

%*c This gets rid of the semicolon following the age.

%*s This reads the next identifying string, "PROF:", and discards it.

%*[] This removes all blanks between "PROF:" and the next string.

%[";] This reads all characters up to the next semicolon, and assigns them to the character
array prof.

%*c This gets rid of the semicolon following the profession string.

%*s This reads the final identifying string, "SAL:", and discards it.

%d This reads the final integer and assigns it to the integer variable salary. Again, note
that the address of salary is given, not the variable name itself.

Although somewhat confusing to read, this format is quite flexible, since it allows for multiple
spaces between items and varying identifying strings (Le. "PROFESSION:" could be specified
instead of "PROF:"). The following scanf call reads the same data, but is much less flexible:

scanf(IINAME: %[-;]; AGE:%d; PROF: %[-;]; SAL: %dll,name,&age,prof,&salary);

Here, literal characters are used to exactly match the characters in the input line. This works
fine if you can be sure that the data always appears in this form. If one typing variation is made,
however, such as typing "SALARY:" instead of "SAL:", the scanf fails.

Scanf waits for more data as long as there are unsatisfied conversion specifications in the format.
Thus, a scanf call like

scanf(lI%f%f%f ll , &float1, &float2, &float3);

where floatl, float2, and float3 are all variables of type float, allows you to enter data in several
ways. For example,

14.77 29.8 13.0

12 Using C Library Routines

is read correctly by scanf, as is

14.77 1 RETURN I

29.81 RETURN I

13.0 1 RETURN I

Note: using decimal points in floating-point data is recommended whenever floating-point vari­
ables are being read. However, scanf converts integer data to floating-point if the conversion
specification so demands. Thus, "13.0" in the previous example could have been entered as
"13" with no side effects.

As a final example, consider the input string

abcdef137 d14.77ghijklmnop

Suppose that the following code fragment is used to read this string:

char arr1[10]. arr2[10]. arr3[10]. arr4[10];
float float1;
scanf(I%4c%[-3]%6c%f%[ghijkl]".arr1.arr2.arr3.&float1.arr4);

What values are stored in the variables listed? (Give this some thought before reading on.)
As before, break up the format into separate conversion specifications, and see what data is
demanded by each.

%4c

%["3]

%6c

%f

%[ghijkl]

reads four characters, and assigns them to arrl. Thus, the string "abed"
is assigned to arrl. Note that an extra character, NULL, is appended to
the end of the string.

reads all characters from the current character up to the character "3".
This assigns "en", along with an added NULL character, to the array
arr2.

reads the next six characters and stores them in the array arr3. Thus, "37
d14" is assigned to arr3, terminated by a NULL character.

reads a floating-point value which, due to the lack of a field width, is
terminated by the first "inappropriate" character. Thus, the value". 77" is
assigned to floatl.

reads all characters up to the first character not occurring between the
brackets. This stores the string "ghijkl", along with an appended NULL
character, in the array arr4.

Using C Library Routines 13

Note that there are some characters left in stdin that were not read. What happens to these
characters? Do they just go away? No! Any characters left unread in the input remain there!
This can cause unexpected errors. Suppose that, later in the above program fragment, you want
to read a string from stdin using %s. No matter what string you type in as input, it will never be
read, because the %s conversion specification is satisfied by reading "mnop" - the characters
left over from the previous read operation! To solve this, always be sure you have read the
entire current line of input before attempting to read the next. To fix this in the previous scanf
example, just add a %*s conversion specification at the end of the format. This reads and
discards the left-over characters.

Printf
Printf is the other half of the formatted I/O team. It enables you to output data in formatted
form. Its syntax is identical to that of scanf:

printf (format. [item [. item ...] \ I]) ;

where the format is a pointer to a character string (or the character string itself enclosed in
double quotes) which specifies the format and content of the data to be printed. Each item is a
variable or expression specifying the data to print.

Printfs format is similar in many respects to that of scanf. It is made up of conversion specifi­
cations and literal characters. As in scanf, literal characters are all characters that are not part
of a conversion specification. Literal characters are printed on stdout exactly as they appear in
the format.

Literal Characters
Included in the list of literal characters are escape sequences, which are sequences beginning
with a backslash (\ e) which stand Jor other characters. The following list shows the escape
sequences defined for printf (and scanf, though less frequently used):

\b
\n

backspace;

new-line (carriage-return/line-feed sequence); output begins at the beginning of a
new line;

\r carriage-return without a line-feed; output begins at the beginning of the current
line (data already printed on that line is over-printed);

\t tab;

\ \ literal backslash;

\nnn the character represented by the octal number nnn in the ASCII character set.
Nnn must begin with a zero. For example, \007 is an ASCII bell, which beeps
the bell on your terminal.

14 Using C Library Routines

Conversion Specifications
A conversion specification for printf is very similar to that of scanf, but is a bit more complicated.
The following list shows the different components of a conversion specification in their correct
sequence:

1. A percent sign (%), which signals the beginning of a conversion specification; to output a
literal percent sign, you must type two percent signs (%%);

2. Zero or more flags, which affect the way a value is printed (see below);

3. an optional decimal digit string which specifies a minimum field Width;

4. an optional precision consisting of a dot (.) followed by a decimal digit string;

5. an optional I (lower-case L) or h, indicating a long or short integer argument;

6. a conversion character, which indicates the type of data to be converted and printed.

As in scanf, a one-to-one correlation must exist between each specification encountered and each
item in the item list.

The available flags are:

+

blank

causes the data to be left-justified within its output field. Normally, the data is
right-justified.

causes all signed data to begin with a sign (+ or -). Normally, only negative
values have signs.

causes a blank to be inserted before a positive signed value. This is used to line
up positive and negative values in columnar data. Otherwise, the first digit of a
positive value is lined up with the negative sign of a negative value. If the "blank"
and "+" flags both appear, the "blank" flag is ignored.

causes the data to be printed in an "alternate form". Refer to the descriptions of
the conversion characters below for details concerning the effects of this flag.

A field width, if specified, determines the minimum number of spaces allocated to the output
field for the particular piece of data being printed. If the data happens to be smaller than the
field width, the data is blank-padded on the left (or on the right, if the - flag is specified) to
fill the field. If the data is larger than the field width, the field width is simply expanded to
accommodate the data. An insufficient field width never causes data to be truncated. If no field
width is specified, the resulting field is made just large enough to hold the data.

Using C Library Routines 15

The precision is a value which means different things depending on the conversion character
specified. Refer to the descriptions of the conversion characters below for more details.

Note: a field width or precision may be replaced by an asterisk (*). If so, the next item in the
item list is fetched, and its value is used as the field width or precision. The item fetched must
be an integer.

Conversion Characters
conversion character specifies the type of data to expect in the item list, and causes the data to
be formatted and printed appropriately. The integer conversion characters are:

d an integer item is converted to signed decimal. The precision, if given, specifies
the minimum number of digits to appear. If the value has fewer digits than that
specified by the precision, the value is expanded with leading zeros. The default
precision is one (1). A null string results if a zero value is printed with a zero
precision. The # flag has no effect.

u an integer item is converted to unsigned decimal. The effects of the precision
and the # flag are the same as for d.

o an integer item is converted to unsigned octal. The # flag, if specified, causes
the precision to be expanded, and the octal value is printed with a leading zero
(a C convention). The precision behaves the same as in d above, except that
printing a zero value with a zero precision results in only the leading zero being
printed, if the # flag is specified.

x an integer item is converted to hexadecimal. The letters abcdef are used in
printing hexadecimal values. The # flag, if specified, causes the precision to
be expanded, and the hexadecimal value is printed with a leading "Ox" (a C
convention). The precision behaves as in d above, except that printing a zero
value with a zero precision results in only the leading "Ox" being printed, if the
flag is specified.

X same as x above, except that the letters ABCDEF are used to print the hexadec­
imal value, and the # flag causes the value to be printed with a leading "OX".

16 Using C Library Routines

The character conversion characters are as follows:

c

s

the character specified by the char item is printed. The precision is meaningless,
and the # flag has no effect.

the string pointed to by the character pointer item is printed.' If a precision is
specified, characters from the string are printed until the number of characters
indicated by the precision has been reached, or until a NULL character is en­
countered, whichever comes first. If the precision is omitted, all characters up to
the first NULL character are printed. The # flag has no effect.

The floating-point conversion characters are:

f

e

E

the float or double item is converted to decimal notation in style j; that is, in the
form

[-]ddd.ddd

where the number of digits after the decimal point is equal to the precision. If
no precision is specified, six (6) digits are printed after the decimal point. If the
precision is explicitly zero, the decimal point is eliminated entirely. If the # flag
is specified, a decimal point always appears, even if no digits follow the decimal
point.

the float or double item is converted to scientific notation in style e; that is, in
the form

[-]d.dddAe±ddd

where there is always one digit before the decimal point. The number of digits
after the decimal point is equal to the precision. If no precision is given, six (6)
digits are printed after the decimal point. If the precision is explicitly zero, the
decimal point is eliminated entirely. The exponent always contains exactly three
digits. If the # flag is specified, the result always contains a decimal point, even
if no digits follow the decimal point.

same as e above, except that E is used to introduce the exponent instead of e
(style E).

Using C Library Routines 17

9

G

the float or double item is converted to either style! or style e, depending on the
size of the exponent. If the exponent resulting from the conversion is less than
-4 or greater than the precision, style e is used. Otherwise, style! is used. The
precision specifies the number of significant digits. Trailing zeros are removed
from the result, and a decimal point appears only if it is followed by a digit. If
the # flag is specified, the result always has a decimal point, even if no digits
follow the decimal point, and trailing zeros are not removed.

same as the 9 conversion above, except that style E is used instead of style e.

The items in the item list may be variable names or expressions. Note that, with the exception
of the s conversion, pointers are not required in the item list (contrast this with scanfs item list).
If the s conversion is used, a pointer to a character string must be specified.

Examples
Here are some examples of print! conversion specifications and a brief description of what they
do:

%d

%+7.2f

output a signed decimal integer. The field width is just large enough to
hold the value.

output a signed decimal integer. The left-justify flag (-) and the blank flag
are specified. The asterisk causes a field width value to be extracted from
the item list. Thus, the item specifying the desired field width must occur
before the item containing the value to be converted by the d conversion
character.

output a floating-point value. The + flag causes the value to have an initial
sign (+ or -). The value is right-justified in a 7-column field, and has
exactly two digits after the decimal point. This conversion specification is
ideal for a debit/credit column on a finance worksheet. (If the + sign is
not necessary, use the blank flag instead.)

18 Using C Library Routines

Consider the following program, which reads a number from stdin, and prints that number,
followed by its square and its cube:

#include <stdio.h>
mainO
{

double x;

printf("Enter your number: II);
scanf ("%F". &x);
printf("Your number is %g\n". x);
printf("Its square is %g\nlts cube is %g\n". x*x. x*x*x);

}

The 9 conversion character is used so that the decision about whether or not to use an exponent
is automated. Note that the item list contains expressions to calculate x squared and x cubed.
Also note that the address of the variable is required in order to read a value for it, but printing
requires the variable name itself.

How about a program that accepts a decimal integer, and then prints the integer itself, its square,
and its cube in decimal, octal, and hexadecimal? Easy enough:

#include <stdio.h>
maine)
{

long n. n2. n3;

7* get value */

printf("Enter your number: II);
scanf(I%D". &n);

1* print headings */

printf(lI\n\n Decimal

/* do the computation */

n2 = n * n;
n3 = n * n * n' .
printf("n itself: %7ld %910
printf("n squared: %71d %910
printf("n cubed: %71d %910

}

Octal Hexadecimal\n");

%6lx\n" • n. n. n);
%6lx\n". n2. n2. n2) ;
%6lx\n". n3. n3. n3);

Using C Library Routines 19

This program prints the headings "Decimal", "Octal", and "Hexadecimal", and then prints out
the data in tabular form. Programs which print tabular data always require some tinkering with
the formats to make things come out right. Type this in and try it yourself.

Strings are especially easy to manipulate using print/. The following simple program illustrates
this:

#include <stdio.h>
maine)
{

}

char first [15] , last [25] ;

printf("Enter your first and last names: II);
scanf(IIYesYesll, first, last);
printf(lI\nWell, hello Yes, it's good to meet you!\n", first);
printf(IIYeS, huh? Are you any relation to that famous\n", last);
printf("computer programmer, Mortimer Zigfelder Yes?\n", last);
printf("No, sorry, that was my mistake. I was thinking of\n");
printf("O'Yes, not Yes.\n", last, last);

This program shows how easily strings can be inserted in text. Try variations of your own.

20 Using C Library Routines

Input/Output from/to Strings
Two library routines, sscanf and sprintf, enable you to read data from a string, and write data
into a string. These routines behave identically to scanf and printf, respectively, except that
sscanf reads data from a character string instead of from stdin, and sprintf writes data into a
string instead of on stdout.

Reading Data from a String
Sscanf enables you to read data directly from a string. The syntax for an sscanf call is

sscanf(string, format, [item[, item ...]]);

where string is the name of a character array containing the data to be read, and format and
item are familiar terms from the previous section. Thus, the only difference between sscanf and
scanf, syntactically speaking, is sscanfs inclusion of a new parameter, string.

The following program simply reads a string of your choosing from stdin, stores it in the character
array string, and prints out the first word of that string:

#include <stdio.h>
maine)
{

char string[80], word [25] , *gets();

/* get the string */

printf("Enter your string: ,,);
gets(string);

/* get the first word */

sseanf (string, "%s", word);
printf("The first word is %s.\n", word);

}

Using C Library Routines 21

Of course, sscanf is rarely used in this way. Sscanf is more often used as a means of converting
ASCII characters into other forms, such as integer or floating-point values. For example, the
following program uses sscanf to implement a five-function calculator:

#include <stdio.h>
mainO
{

char line[80]. *gets(). op[4];
long n1. n2;
double arg1. arg2;

1* print prompt (» and get input *1

printf("\n> II);
gets (line) ;

1* begin loop *1

}
}

while(line[O] != 'q') {
sseanf (line. "%*S%s ". op);
if (op [0] == '+') {

sseanf(line. I%F%*s%F". &arg1. &arg2);
printf("Answer: %g\n\n". arg1+arg2);

} else if(op[O] == '1-') {
sseanf(line. "%F%*s%F". &arg1. &arg2);
printf("Answer: %g\n\n". arg11-arg2);

} else if(op[O] == '*') {
sseanf(line. "%F%*s%F". &arg1. &arg2);
printf("Answer: %g\n\n". arg1*arg2);

} else if(op[O] == 'I') {
sseanf(line. "%F%*s%F". &arg1. &arg2);
printf("Answer: %g\n\n". arg1/arg2);

} else if(op[O] == '%') {
sscanf(line. "%D%*s%D". &n1. &n2);
while (n1 >= n2)

n1 1-= n2;
printf("Answer: %ld\n\n". n1);

} else
printf("Can't recognize operator: %s\n\n". op);

printf("> II);
gets (line) ;

22 Using C Library Routines

The calculator program accepts input lines having the form

value <operator> value

where value is any number, and <operator> is the symbol +, -, ., I, or %, standing for
addition, subtraction, multiplication, division, or remainder, respectively. All functions except
remainder are handled internally in floating-point, but values for these functions can be typed
with or without a decimal point. Values for the remainder function must not have a decimal
point. There must be at least one space between each value and the operator.

Note the use of sscanf in this program. The entir:e input line is read using gets. Then, the
different parts of the input line are read from line using sscanf. Notice that the input line is
stored as an ASCII string in line, but portions of it are converted to floating-point or integer
values, depending on the operator.

Examples of valid entries are

15.778 * 3.89
27 % 8
17 + 39.72
etc.

The program terminates when it reads a line beginning with "q", such as "quit".

There are two things that differ between reading data from stdin, and reading data from a string.
First, you remember that reading data from stdin causes that data to "go away" -- it is no
longer contained in stdin. This is not true for a string. Since the data is stored in a string, it is
always there, even if that data has been read several times. Second, since the data read from
stdin disappears as you read it, the next read operation from stdin always begins where the
previous read operation terminated. This is not true when you read from a string using sscanf.
Each successive read operation begins at the beginning of the string. Thus, if you want to read
five words from a string stored in a character array, you must read them in a single sscanf call.
If you try to read one word in five separate sscanf calls, each call starts reading at the beginning
of the string, and you end up reading the same word five times!

Using C Library Routines 23

Writing Data Into a String
The sprint! routine enables you to write data into a character string. Its syntax is

sprintf (string, format, [item[, item ...]]) ;

which is identical to that of sscan!. String is the name of the character string into which the data
is written. Format and item are familiar terms from the previous discussion of print!. In fact,
the only difference between sprint! and print! is that sprint! writes data into a character array,
while print! writes data on stdout.

The following program acts as a "formatter" for personal data. Suppose that this program
is used to provide a "friendly" user interface to gather personal data. The data received is
then reformatted into a string which is passed along to another program, such as a data base
maintainer. The string contains the data entered by the user, but in a form using strict field
widths for the various pieces of data. The data base program requires these field widths in
order for the data to be processed correctly, but there is no reason to burden the user with this
requirement. This "formatter" program lets the user enter data in a convenient form (without
the fixed field restrictions imposed by the data base).

#include <stdio.h>
main()
{

char name [31] , prof [31] , hdate[7] , curve [3] , string[81];
char *format = "%30s%2d%30s%6ld%6s%2d%2s";
int age, rank;
long salary;

1* start asking questions *1

printf("\nName (30 chars max): II);
gets (name) ;
while (name [0] != ,] ') {

printf (IIAge: II);
scanf("%d%*c", &age);
printf("Job title (30 chars max): II);
gets (prof) ;
printf("Salary (6 digits max, no comma): II);
scanf("%D%*c", &salary);
printf("Hire date (numerical MMDDYY): II);
gets(hdate);
printf("Percentile ranking (omit \"%%\"): II);
scanf("%d%*c", &rank);
printf("Pay curve: II);
gets (curve) ;

24 Using C Library Routines

1* format string *1

sprintf(string.format.name.age.prof.salary.hdate.rank.curve);
printf("\n%s\n". string);

1* start next round *1

}
}

printf("\nName (30 chars max): II);
gets(name);

This program asks you questions to obtain typical company information such as name, age, job
title, salary, hire date, ranking, and pay curve. This data is then packed into a 78-character
string using sprintj. The string is printed on your screen in this program, but in an actual working
environment, this string would probably be passed directly to the data base program. Note that
sprintf s format is specified as an explicit character pointer. When lengthy, unchanging formats
are used, this is often more convenient than typing the entire format string, especially if the item
list is long.

As an exercise, consider the scanf calls in the previous program. Notice that a %*c conversion
specification is included in the formats of the scanfs which are reading integer values (age, salary,
rank). Why is this necessary? If you aren't sure, take the %*c's out of those formats, re-compile
the program, run it,and note its behavior. (Hint: remember that a new-line character terminates
the read operation for %d and %D conversions, and leaves the new-line unread in stdin.)

Using C Library Routines 25

Input/Output Using Ordinary Files
So far, you have been using library routines which can perform I/O only by using stdin and
stdout. This section introduces routines that enable you to open existing ordinary files for
reading, writing, or both, and to create ordinary files. Routines that enable you to perform I/O
to and from ordinary files are also described.

Opening Ordinary Files
Before a file can be read from or written to, it must be opened. A file is opened using the Jopen

library routine. The syntax of an Jopen call is

fopen«filename> , <type»;

where <filename> is a character pointer to a character string specifying the name of the file to
be opened, and <type> is a character pointer to a one- or two-character string specifying the
I/O operation for which the file is opened. The available <type>s are:

r

w

a

r+

w+

a+

opens the file for reading at the beginning of the file. The file must already exist,
or an error occurs.

opens the file for writing at the beginning of the file. If the file exists, its previous
contents are destroyed. If the file does not exist, it is created.

opens the file for writing at the end of the file (appends data to the end of the
file). If the file does not exist, it is created for writing.

opens the file for both reading and writing, starting at the beginning of the file.
The file must already exist, or an error occurs.

opens the file for both reading and writing, starting at the beginning of the file.
If the file already exists, its previous contents are destroyed. If the file does not
exist, it is created.

opens the file for both reading and writing, starting at the end of the file. If the
file does not exist, it is created.

When a file is opened for an append operation «type> is "a" or "a+"), it is impossible to
overwrite the existing file contents. Fseek can be used to reposition the file pointer to any
position in the file, but when output is written to the file, the pointer is disregarded. When the
append operation (which begins at the end of the existing file) is completed, the file pointer is
repositioned to the end of the appended output.

26 Using C Library Routines

In exchange for a filename and a type, fopen opens a "pathway" between your program and the
file. This "pathway" is called a stream. If you open the file for reading, then the stream provides
one-way data transfer from the file to your program. If you open the file for writing, then data
transfer flows from your program to the file. Finally, if the file is opened for both reading and
writing, the resulting stream is bi-directional.

Fopen also associates a buffer with the stream. This gives the stream the ability to store a
small amount of data. By default, the capacity of the buffer is equal to BUFSIZ bytes, where
BUFSIZ is a constant defined in stdio.h. For the Series 200 and Series 500 computers, BUFSIZ
is defined to be 1024.

The buffer size can be increased, decreased, or set to zero by using setbuf or setvbuf. If the
buffer size is allowed to remain at default size, a maximum of BUFSIZ bytes of data can be
present on the stream at any given time. If the buffer size is reduced to zero, then the stream
can transfer only one byte at a time.

Since fopen takes care of all the intricacies of building a stream and allocating a buffer, all you
need to know is how to find your end of the stream. Fopen provides you with this information
by returning to you a value called a file pointer (often called a stream pointer). A file pointer
"points" to the newly-created stream, and keeps track of where the next I/O operation takes
place (in the form of a byte offset relative to the qeginning of the associated buffer).

Is all this talk about streams and data transfer from a source to a destination beginning to
sound familiar? Do you remember the "pipeline and water" analogy given at the beginning of
this section? These two discussions should sound almost identical, because stdin, stdout, and
stderr are actually file pointers to pre-opened streams! Stdin is a file pointer to a stream which
transfers data from your tty (terminal) file to your program. Stdout and stderr are file pointers
to two different streams which both transfer data from your program to your tty file. Be sure
to note that stdout and stderr are different streams flowing in the same direction between the
same two points!

Once you have a file pointer in your possession, you need never refer to the open file by its
name again. A file pointer provides access to all the information needed by other standard I/O
routines to read from or write to the file.

Using C Library Routines 27

The following program fragment shows how the jopen routine is used:

#include <stdio.h>
main 0
{

}

FILE *fp;

fp = fopen("/users/tom/bin/datafile", "r");
if(fp == NULL) {

}

printf("Can't open datafile.\n");
exit(l);

This jopen call, if successful, opens /users/tom/bin/datafile for reading. The file pointer returned
by fopen is stored in fp. Note that jp's value is checked to see if it is NULL. This is because
jopen returns a NULL pointer if the indicated file cannot be opened. It is good practice to check
the value of a file pointer -- this is the only error indication facility that jopen provides.

The previous example also introduces a new type declaration, FILE. The FILE declaration is
defined in stdio.h. In the example above, it defines fp as a variable containing a file pointer.
Note that explicit declarations of functions returning file pointers is unneccessary - - stdio.h
declares all such functions for you.

Before moving on, keep in mind that several things can stop you from successfully opening
a file. First, HP-UX limits the number of files simultaneously open in a process (refer to the
System Administrator Manual supplied with your system to find your system's limit). Remember
that stdin, stdout, and stderr are automatically opened for you, so the maximum you can
explicitly open is three fewer than the system limit. Second, you must have permission to open
the file for the particular type you have specified (this permission is granted or denied by the
file's mode). Third, trying to open a non-existent file using type r or r+ always fails. Fourth,
if the jilename is specified incorrectly, contains a non-existent directory name, or contains an
intermediate component which is not a directory, the open fails. This is not a complete list, but
it contains some of the common reasons why an attempt to open a file might fail.

28 Using C Library Routines

Single-Character Input/Output
Now that you know how to open files and obtain file pointers, you have a whole new set of I/O
routines at your disposal, enabling you to perform all kinds of I/O operations. In fact, there are
about three times as many available routines that utilize file pointers as there are routines that
are limited to stdin and stdout only!

In this section, only those routines that read or write one character at a time are discussed.
These routines are getc, putc, jgetc, and jputc. Getc and putc are macros defined in stdio.h
which read one character from the specified stream, and write one character on the specified
stream, respectively. They have the following synta~:

getc (stream) ;
putc (c, stream);

where stream is a file pointer obtained from jopen, and c is a variable of type char (or int)
indicating the character to write on the indicated stream. A simple version of the HP-UX cat
command can be written using these routines:

#include <stdio.h>
main (argc, argv)
int argc;
char *argv [] ;
{

}

int c;
FILE *fp;

if(argc != 2) {

}

printf("Usage: cat file\nll);
exit (1) ;

fp = fopen(argv[1] , IIrll);
if(fp == NULL) {

}

printf(IICan't open %s.\nll, argv[1]);
exit (1) ;

while«c getc(fp»!= EOF)
putc(c, stdout);

putc('\n', stdout);

exit(O);

Using C Library Routines 29

This program accepts a single argument which is assumed to be the name of a file whose
contents are to be printed on the user's terminal. The specified file is opened for reading, and
the resulting file pointer fp is used in getc to read a character from the file. Each character read
is written on stdout using putc (note that stdout, as well as stdin and stderr, are perfectly legal
file pointers). The reading and writing loop is terminated when the constant EOF is returned
from getc, indicating that the end of the file has been reached. This constant is defined in
stdio.h.

Note that getc and putc can be made to behave exactly like the getchar and putchar routines
discussed earlier by specifying the appropriate file pointer. In other words,

getc(stdin);

is identical to

getchar();

and

putc (c, stdout) ;

is identical to

putchar(c) ;

Thus, the putc call in the previous program could just as easily have been

putchar(c) ;

without altering the behavior of the program. However, if the destination of the data is some­
where other than the user's terminal, the flexibility of putc is required. Take, for example, the
following program, which is a simple version of the HP-UX cp command:

#include <stdio.h>
main (argc, argv)
int argc;
char *argv[];
{

int c;
FILE *from, *to;

if(argc != 3) {

}

printf("Usage: cp fromfile tofile\n");
exit (1) ;

from = fopen(argv[l] , "r");

30 Using C Library Routines

}

}

if(from == NULL) {

}

printf("Can't open %s.\n". argv[1]);
exit(1) ;

to = fopen(argv[2]. "W");
if(to == NULL) {

printf("Can't create %s.\n". argv[2]);
exit(1) ;

while«c = getc(from)) != EOF)
putc(c. to);

exit(O);

This program accepts two arguments. The first is the name of the file to be copied, and the
second is the name of the file to be created. The first file is opened for reading, and the second
file is created for writing. The data from the first file is then copied directly to the newly-created
file.

The fgetc and fputc routines are actual functions, not macros. Their syntax and usage is identical
to that of getc and putc, so no examples are given here illustrating their use. However, here are
some distinctions between the macro and function versions of these routines to help you decide
which to use:

• A function call takes time, since the function call still exists at run-time. A macro call,
however, takes no time at all, because the macro call is replaced with the actual code
making up the macro during compilation, before run-time. Thus, generally speaking,
programs containing macros run faster than programs containing the equivalent function
calls.

• A function's code is localized in one section of the program. Each function call causes a
jump to that section to execute the function. A macro call, however, is replaced with its
code everywhere that macro call appears. Thus, programs containing macro calls generally
require more space than programs containing the equivalent function calls.

• You may take the address of a function, and pass it as an argument. You cannot do this
with a macro.

Given these gUidelines, decide which routines to use based on your own constraints.

Using C Library Routines 31

Character Push·Back
The ungetc routine enables you to push back a single character onto an input stream. This
character is then returned by the next getc call (or equivalent).

Ungetc's syntax is as follows:

ungetc (c. stream);

where c is the character to be pushed back, and stream is the input stream where the push-back
is to occur. Note that c must be a character that has been previously read from stream.

The following program simply reads one character from stdin, pushes it back onto stdin, re-reads
the character, and checks to make sure that this character and the character originally pushed
back are the same. A message is printed on stdout stating the outcome of the comparison.

#include <stdio.h>
mainO
{

}

int ci. c2;

ci = getcharO;
ungetc(ci. stdin);
c2 = get char 0 ;
if(ci == c2)

printf("They're the same!\nn);
else

printf("Oops! They're different!\n");

One character's worth of push-back is guaranteed as long as something has been read from
the stream prior to the push-back attempt, and provided that the stream is buffered. More
characters could possibly be pushed back, but determining exactly how many characters of push­
back you can safely perform isquite possibly not worth the effort. However, for completeness,
the following statement is included as a method for determining the number of characters of
push-back available at any given time:

numpb = ftell (stream) % BUFSIZ + 1;

where ftell is a function discussed in a later section, stream is a file pointer, and BUFSIZ is a
constant defined in stdio.h containing the size of the buffer in bytes. After execution, numpb
contains the number of characters of push-back available at that time.

32 Using C Library Routines

String Input/Output
The fgets and fputs routines enable you to read or write strings from or to specified streams.
Their syntax is as follows:

fgets (string, n, stream);
fputs (string, stream);

where string is a pointer to a character string, and stream is a file pointer to the input or output
stream.

Fgets reads a character string from the specified stream, and stores it in the character array
pointed to by string. Fgets reads n-l characters, or up to a new-line character, whichever
comes first. If a new-line character is encountered, it is retained as part of the string (contrast
this with gets, which replaces the new-line with a NULL character). Fgets appends a NULL
character to the string.

F puts writes the character string pointed to by string on the specified stream, stopping when a
NULL character is encountered. Fputs does not append a new-line character to the string when
it is written. This is because fputs is intended for use with fgets, which incorporates a new-line
character into the string if a new-line is encountered in the input.

The cp program written earlier can be re-written using fgets and fputs:

#include <stdio.h>
main (argc, argv)
int argc;
char *argv[];
{

char c, line [256] , *fgets();
FILE *from, *to;

if(argc != 3) {

}

printf("Usage: cp fromfile tofile\n");
exit(1);

from = fopen(argv[1] , "r");
if(from == NULL) {

}

printf("Can't open %s.\n", argv[1]);
exit (1) ;

to = fopen(argv[2] , "W");
if(to == NULL) {

}

printf("Can't create %s.\n", argv[2]);
exit(1) ;

Using C Library Routines 33

}

while (fgets(line , 256, from) != NULL)
fputs(line, to);

exit(O);

This program functions exactly like the previous version of cp above. Note that fgets's return
value is compared to NULL in the while loop, since fgets returns the NULL pointer when it
reaches the end of its input.

This program can easily be converted to a simple cat command. It only requires four changes.
Can you see what they are? First, change the argc comparison such that it reads

if (argc ! = 2) ...

(You might also want to change the associated usage message!) Second, remove the to file
pointer, since you don't need it anymore. Third, remove the block of code which uses fopen to
open the new file, and assigns a value to to. Fourth, change the fputs call such that it reads

fputs (line, stdout);

Here's the new cat command:

#include <stdio.h>
main (argc, argv)
int argc;
char *argv[] ;
{

}

char c, line [256] , *fgets();
FILE *from;

if(argc .(2) {

}

printf("Usage: cat file\n");
exit(1);

from = fopen(argv[1] , "r");
if(from == NULL) {

}

printf("Can't open %s.\n", argv[1]);
exit(1) ;

while(fgets(line, 256, from) != NULL)
fputs(line, stdout);

exit(O);

34 Using C Library Routines

Formatted Input/Output
Just as there are versions of scanf and printf which perform string I/O, so there are versions
which enable I/O using files. Fscanf enables you to read data of all types from a specified stream,
and fprintf provides the capability of writing data on a stream. Their syntax is as follows:

fscanf (stream, format, [item[. item ...]]) ;
fprintf (stream, format, [item[. item ...]]) ;

Stream is a file pointer to an open stream. Format and item should be familiar terms from
previous discussions.

The following program illustrates the use of the fscanf and fprintf routines:

#include <stdio.h>
main (argc, argv)
int argc;
char *argv[];
{

}

int count = 0;
FILE *file;

if(argc != 2) {

}

fprintf(stderr, "Usage: wdcnt filename\n");
exit(l);

file = fopen(argv[l] , "r");
if(file == NULL) {

}

fprintf(stderr, "Can't open %s.\n", argv[l]);
exit (1) ;

while (fscanf (file, "%*S") != EOF)
count++;

printf("Number of words found: %d\n", count);

exit(O);

This program, named wdcnt (for "word count"), counts the number of "words" in the file specified
as its only argument. A word is defined as a string of non-space characters.

Using C Library Routines 35

Note how fprintf is used in this program. You learned in a prior discussion that stderr is typically
used to output error messages or warning statements. In this program, fprintf is used to direct
error messages to stderr. You don't lose anything by doing this, since data written on stderr
appears on your terminal by default. However, you gain some important flexibility. Now that
error output is written on a different stream than normal output, the error output (or the normal
output) can be redirected to another destination. For example, invoking the previous program
as

$ wdcnt <file1> 2>errmsgs

causes all output arising from erroneous conditions to be collected in the file errmsgs. For the
wdcnt program, this is somewhat trivial, since the program terminates upon any error. However,
for programs which output any number of warnings without terminating, this is a very useful
capability. Not only does it keep normal, desired output from getting cluttered up with error
messages, but it enables you to save output for later examination at your leisure. Thus, it is
good programming practice to write error messages and warnings on stderr, and use stdout (or
whatever your destination file is) to output normal data.

Binary Input/Output
The routines described in this section deal with data in its binary form - that is, the data is never
converted to ASCII for user viewing. These routines are used to transfer raw data between two
points, such as from a variable to a data file, or vice versa.

Two routines, getw and putw, are used to read or write an integer word (an iot) to or from a
stream, respectively. Their syntax is as follows:

getw(stream) ;
putw(w, stream);

where stream is a file pointer to the input or output stream, and w is the integer word to be
output by putw.

36 Using C Library Routines

The following program "sorts" a data file which has presumably been created earlier, and contains
raw integer data. The program divides this data file into two new data files, one containing
integer data whose absolute value is less than or equal to 32767, the other containing data
whose absolute value is larger than 32767.

#include <stdio.h>
main (argc, argv)
int argc;
char *argv [] ;
{

}

int word;
FILE *dfile, *datale, *datagt;

if(argc != 2) {

}

fprintf(stderr, "usage: intsort filename\n");
exit(l);

dfile = fopen(argv[l] , "r");
if(dfile == NULL) {

}

fprintf("Can't open %s.\n", argv[l]);
exit (1) ;

datale = fopen("dfle", "W");
if(datale == NULL) {

}

fprintf("Can't create dfle file.\n");
exit(l);

datagt = fopen("dfgt", "W");
if(datagt == NULL) {

}

fprintf("Can't create dfgt file.\n");
exit (1) ;

while«word = getw(dfile» != EOF) {
if(word <= 32767 && word >= -32767)

putw(word, datale);
else

putw(word, datagt);
}

exit(O);

This program reads a word from the specified data file. If its absolute value is less than or equal
to 32767, the word is written on a file called dfle in the user's current directory. Otherwise,
the word is written on a file called dfgt in the current directory.

Using C Library Routines 37

Note that this program works only on machines that use four-byte integers. Also, the comparison
between word and the constant EOF is faulty, since EOF is defined to be -1, a valid integer.
The section entitled Stream Status Inquiry Routines describes standard I/O routines which fix
this problem.

Both of these routines transfer four bytes at a time. Again, there is no ASCII conversion
associated with these routines, so if you attempt to print the contents of a file containing integer
data output by putw, you will get garbage. Note that it makes little sense to input binary data
from stdio, as in

getw(stdin);

unless stdio is redirected from a file containing binary data. Using getw to read data from your
keyboard is futile. If you type in a valid-looking integer, like "1728", getw reads the ASCII
values of those characters and stores them as an integer. This results in data being read which
is very different from what you probably intended.

Two other routines, called fread and fwrite, provide much more flexible binary data input and
output. Their syntax is as follows:

fread«char *)ptr, sizeof(*ptr), nitems, stream);
fwrite«char *)ptr, sizeof(*ptr), nitems, stream);

where ptr is a pointer to the beginning of a block (array) of data. This argument is cast as a
character pointer because these routines expect a pointer of this type. The second argument
specifies the number of bytes per unit of data (four bytes per iot, one byte per char, x bytes per
struct, etc.). The C operator sizeof is usually used to obtain this value. The third argument,
nitems, is an integer specifying the number of units of data to read or write. For example, if ptr
points to the beginning of a structure, sizeof(ptr) tells how many bytes make up that structure,
and nitems tells how many structures to read. Actually, the second and third arguments above
may be reversed in the argument list with no ill effects, because internally these routines simply
multiply the two integers together to obtain the total number of bytes to read. Finally, stream is
a file pointer to the input or output stream.

38 Using C Library Routines

As an example, suppose you have a program which keeps track of certain employee data. Each
employee is to be described in a single structure. Here is a simple program to do that:

#include <stdio.h>
struct emp {

}

char
char
long
char
char
int

name [40] ;
job[40] ;
salary;
hire [6]
curve [2]
rank;

/* name */
/* job title */
/* salary */
/* hire date */
/* pay curve */
/* percentile ranking */

#define EMPS 400
maine)

/* no. of employees */

{

int items;
struct emp staff [EMPS] ;
FILE *data;

data = fopen("/usr/lib/employees/empdata". Ur");
if(data == NULL) {

}

fprintf(stderr. "Can't open employee data file.\n");
exit(1);

items = fread«char *)staff. sizeof(staff[O]). EMPS. data);
if(items != EMPS) {

}

fprintf(stderr. "Insufficient data found.\n");
exit(1);

fclose(data);
archive ("/usr/lib/employees/empdata") ;

/* Employee information processing goes here. */

/* Processing is done. Write out new employee records. */

data = fopen("/usr/lib/employees/empdata". "W");
if(data == NULL) {

}

fprintf(stderr. "Can't create new employee file.\n");
exit (1) ;

Using C Library Routines 39

}

items = fwrite«char *)staff, sizeof(staff[O]) , EMPS, data);
if(items != EMPS) {

}

fprintf(stderr, "Write error!\n");
exit(1);

exit(O);

archive (filename)
char *filename;
{

}

This program reads the employee information contained in the binary file
/usr/lib/emp/oyees/empdata. The data in this file consists of concatenated streams of bytes
describing each employee of a certain 400-employee company. The bytes are written such that,
when read correctly, the bytes correspond exactly with the emp structure defined in the program.
The staff array is an array of structures containing one structure for each employee.

In the tread call, the sizeof(stafJ[O]) expression returns the number of bytes in the emp structure.
Since the same number of bytes are in each employee structure, any element of the staff array
could have been specified as the sizeof argument; stafJ[O] is used in this example. (By counting
the number of bytes in each structure member, you can get an approximation of the number of
bytes returned by the sizeof operator: 40 + 40 + 8 + 6 + 2 + 4 = 100 bytes. This may vary
due to padding performed by a programming language, or by machine architecture.) Specifying
EMPS as the nitems argument tells fread to read 400 such structures. Thus, 100 x 400 =

40000 bytes are read, filling in the information for the members of each structure contained in
the staff array.

The archive function is not shown here, but simply saves the old employee information in empdata
in an employee information archive of some kind. After the information is archived, the empdata
file is overwritten with the new, updated employee information.

A new routine, called felose, is introduced here. Fclose simply closes the stream associated with
the file pointer specified. This is necessary in order to re-open the file for writing. Once it is
open for writing, fwrite is used to overwrite its previous contents with the new data.

One final note about these two routines: they return the number of items of data which have
been read or written. Thus, you can compare this number with whatever you specified for nitems
to see if everything you wanted read or written actually was. This return value is used twice in
the above program to flag probable read and write errors.

40 Using C Library Routines

The fread and fwrite roq.tines can be made to read any type of data. The following examples
show some fread calls which read several different types of data:

To read a long integer:

long nint;
fread«char *)&nint, sizeof(nint), 1, stream);

To read an array of 100 long integers:

long nint[100];
fread«char *)nint, sizeof(nint[O]), 100, stream);

To read a double precision floating-point value:

double fpoint;
fread«char *)&fpoint, sizeof(fpoint), 1, stream);

To read an array of 50 floating-point values:

float fpoint[50];
fread«char *)fpoint, sizeof(fpoint[O]), 50, stream);

To get the equivalent fwrite calls, just substitute "fwrite" in place of "fread" in the previous
examples. You can see how much more flexible fread and fwrite are than getw and putw.
Whereas getw and putw are limited to reading or writing a single four-byte integer per call, fread
and fwrite can be made to read or write any number of variables of any type.

Using C Library Routines 41

Stream Status and Control Routines
This section discusses standard I/O routines which enable you to:

• Determine whether or not an error has occurred on an open stream (feof, ferror, clearerr);

• Re-position the location of the next I/O operation on an open stream (rewind, ftell, fseek);

• Control various attributes of an open stream, such as buffering, flushing, etc. (fclose,
setbuf, fflush, freopen);

• Convert a file pointer to a file descriptor, and vice versa (fileno, fdopen).

Stream Status Inquiry Routines
This section describes three routines, feof, ferror, and clearerr, which enable you to determine
the status of an open stream at any given time.

Feof is a macro defined in stdio.h which returns a non-zero value if the end-of-file has been
reached on an input stream. Its syntax is as follows:

feof (stream) ;

Do you remember the example program which illustrated the use of getw and putw? It was
noted that comparing getw's return value to the constant EOF was faulty, because getw returns
an integer, and EOF is defined to be a valid integer (-1). How then do you determine if
end-of-file has been reached when routines like getw are being used? You use leof-

42 Using C Library Routines

The example program for getw / putw can be changed to use /eo/:

#include <stdio.h>
main(argc. argv)
int argc;
char *argv [] ;
{

}

int word;
FILE *dfile. *datale. *datagt;

if(argc != 2) {

}

fprintf(stderr. "usage: intsort filename\n");
exit (1) ;

dfile = fopen(argv[l]. "r");
if(dfile == NULL) {

}

fprintf("Can't open %s.\n". argv[l]);
exit (1) ;

datale = fopen("dfle". "w");
if(datale == NULL) {

}

fprintf("Can't create dfle file.\n");
exit(l) ;

datagt = fopen (lIdfgt II • "w");
if(datagt == NULL) {

}

fprintf("Can't create dfgt file.\n");
exit(l) ;

for(; ;) {

}

if«word = getw(dfile» != EOF) {
if(word <= 32767 && word >= 1-32767)

putw(word. datale);
else

putw(word. datagt);
} else {

}

if(feof(dfile»
break;

else
putw(word. datale);

exit(O);

Using C Library Routines 43

An infinite loop is set up around the getw/putw process. Whenever getw returns an integer
equal to EOF, feof is used to find out if end-of-file has been reached. If it has, the loop (and the
program) terminates; if not, the integer is written on dfle, and the loop continues.

Ferror is a routine which examines the specified stream to determine whether or not a read or
write error has occurred. Its syntax is

f error (stream) ;

Ferror, like feof, is intended to clarify ambiguous return values from standard I/O routines.
Actually, only getw and putw require the use of ferror to determine if an error has occurred.
Both of these routines return EOF on end-of-file or error. Since these routines deal with integer
data, however, you need feof and ferror to determine if the EOF returned actually indicated an
error or an end-of-file, or if it's just a-I.

If an error has occurred on a stream, ferror returns a non-zero value.

Whenever an error occurs on an open stream, a flag is set to indicate the error. It is this flag
that ferror checks to determine whether or not an error has occurred. This flag is not reset
when it is checked. Thus, if an error has occurred, the error flag for that stream remains set.
This could lead to misleading information if an ferror call indicates that an error has occurred,
when in reality the error occurred long ago. The clearerr routine clears (or resets) the error
indication flag for the specified stream. This routine should be used whenever an error has been
indicated, so that the same error is not indicated at a later time. Clearerr's syntax is

clearerr (stream) ;

Because ferror and clearerr are used infrequently in typical programs, no examples are given
specific to their use. The feof example above illustrates the general scenario in which all three
of these routines are used.

44 Using C Library Routines

Re-positioning Stream 1/0 Operations
There are three routines, rewind, !tell, and fseek, which enable you to move the location of the
next I/O operation on an open stream.

Rewind simply positions the next I/O operation at the beginning of the file. Its syntax is

rewind (stream) ;

For example, suppose a particular application program can put a password on a data file it uses.
This password is stored in encrypted form on the first line of the file. The line is recognized as
a password line if the first two characters are "*P". If the file has no password line, then access
to the file is unrestricted. If a password line is found, the user is prompted for the password
before access is permitted. The following code can be used to look for a password line:

#include <stdio.h>
main (argc, argv)
int argc;
char *argv[];
{

}

FILE *pswd;
char line [256] ;

if(argc != 2) {

}

fprintf(stderr, "Usage: getpswd file\n");
exit(l) ;

pswd = fopen(argv[l] , "r");
if(pswd == NULL) {

}

fprintf(stderr, "Can't open %s.\n", argv[l]);
exit(l) ;

fgets(line, 256, pswd);
if(line[O] == '*' && line[l] == 'P') {

/* ask for and check password */

} else
rewind(pswd);

/* application program goes here */

exit (0) ;

Using C Library Routines 45

If the first two characters of the first line are ".p", then code is executed which asks for and
checks a password. However, if the first line is not a password line, the file is assumed to be
unprotected, and the line just read is probably part of the data. Thus, the file must be rewound
so the data contained in the first line is available to the application program.

The ftell routine returns a long integer specifying the current position of the next I/O operation
on an open stream. This position is expressed as a byte offset relative to the beginning of the
open file. Its syntax is as follows:

ftell (stream) ;

The fseek routine enables you to re-position the next I/O operation on an open stream to any
location you wish. Its syntax is

fseek(stream, offset, ptrname);

where stream is a file pointer to the open stream, offset is a long integer specifying the number
of bytes to skip over, and ptrname is an integer indicating the reference point in the file from
which offset bytes are measured. The possible values for ptrname are:

o move offset bytes from the beginning of the file;

1 move offset bytes from the current position in the file;

2 move offset bytes from the end of the file.

Offset can be either negative or positive, indicating backward or forward movement in the file,
respectively.

The following program illustrates the use of the fteU and fseek library routines. The program
prints each line of an n-line file in this order: line 1, line n, line 2, line n-l, line 3, .••

#include <stdio.h>
main (argc, argv)
int argc;
char *argv [] ;
{

char line [256] ;
int newlines;
long front, rear, ftell();
FILE *fp;

front = 0;
rear = 0;

if(argc < 2) {
fprintf(stderr, "Usage: print filename\n");

46 Using C Library Routines

}

exit (1) ;
}

fp = fopen(argv[1]. "r");
if(fp == NULL) {

}

fprintf(stderr. "Can't open %s. \n". argv[1]);
exit (1) ;

newlines = countnl(fp) % 2;

fseek(fp. O. 2);
rear = ftell(fp);

while(front < rear) {
fseek(fp. front. 0);
fgets(line. 256. fp);
fputs(line. stdout);
front = ftell(fp);
findnl(fp. rear);
rear = ftell(fp);
if(newlines == 1) {

}

if(rear <= front)
break;

}
fgets(line. 256. fp);
fputs(line. stdout);

exit (0) ;

countnl(fp)
FILE *fp;
{

char c;
int count = 0;

while «c = getc (fp» ! = EOF) {

if (c == '\n')

}

count++;
}
rewind(fp) ;
return (count) ;

findnl(fp. offset)
FILE *fp;

Using C Library Routines 47

long offset;
{

char c;

fseek(fp. (offset-2). 0);
while«c = getc(fp» != '\n') {

fseek(fp. -2. 1);
}

}

This program uses ftell and fseek to print lines from a file starting at the beginning and the end
of the file, and converging toward the center. The countnl (count new-lines) function counts the
number of lines in the file so the program can decide whether or not to print a line in the final
loop (this prevents the middle line being printed twice in files with an odd number of lines). The
findnl (find new-line) function seeks backwards in the file for the next new-line. When found,
this positions the next I/O operation such that fgets gets the next line back from the end of the
file.

Note the use of fseek in this program. All three types of seeks are represented here. The first
fseek of the program is done relative to the end of the file. All other fseeks in the main program
are done relative to the beginning of the file. Finally, findnl contains an fseek which is relative
to the current position.

Recall the employee data routine, where each employee is described by the structure

struct emp {
char name [40] ; /* name */
char job[40] ; /* job title */
long salary; /* salary */
char hire [6] ; /* hire date */
char curve [2] ; /* pay curve */
int rank; /* percentile ranking */

}

48 Using C Library Routines

That routine simply read in the data for 400 employees all at once. Suppose you want the
program to be selective, so that you can specify (by employee number, 1 - 400) which employee's
information you want. This is easily done using fseek. The following program fragment shows
how:

}

int empno, bytes;
long total;
FILE *data;
struct emp empinfo;

1* check for usage error and open data file *1

sscanf (argv [1], "%d", &empno);
bytes = sizeof(empinfo);
total = (empno - 1) * bytes;
fseek (data , total, 0);
fread«char *)&empinfo, sizeof(empinfo), 1, data);

1* print out desired information *1

exit(O);

In this program, argv[l] contains, via a command-line argument, the employee number about
whom information is desired. This employee number is converted to integer form using sscanf.
The number of bytes per employee structure is obtained using sizeof, and is stored in bytes. The
total number of bytes to skip in the data file is found by multiplying the employee number (minus
one) times the number of bytes per employee structure. This is stored in total. Then, fseek is
used to seek past the specified number of bytes, relative to the beginning of the data file. This
leaves the next I/O operation positioned at the start of the specified employee's information.
The information is read using fread.

NOTE

If you have a stream which is open for both reading and writing, a read
operation cannot be followed by a write operation without one of the
following occurring first: a rewind, an fseek, or a read operation which
encounters end-of-file. Similarly, a write operation cannot be followed by
a read operation unless a rewind or fseek is performed.

Using C Library Routines 49

Stream Control Routines
The routines described here help you control certain attributes of file pointers. The routines
described are fdose, setbuf, setubuf, fflush, and freopen.

fclose
You have already seen felose in action in the previous example program which read an employee
data file. Fdose flushes the buffer associated with the specified stream, and, if the buffer was
allocated automatically by the standard I/O system, frees the space allocated to that buffer . The
stream is then closed, breaking the connection between your file pointer and the stream.

You may be wondering why so many example programs have been written that open files but
never explicitly close them. There are two reasons why this is permissible. First, you'll notice
that all programs in this tutorial that open files end with a call to exit. The exit system call
automatically performs an fdose for every open file in that process. Second, when a program is
compiled with ee (or fe, or pe), an exit call is automatically compiled in with your code. Keep in
mind, however, that it is generally bad programming practice to rely on the system to clean up
after you! If you explicitly open any files, you should explicitly close them when you are done.
If this is too much trouble, at least include an exit call at each termination point in the program.
(All future example programs in this article will contain fdose calls.)

Setbuf
Setbuf and setubuf routines enable you to assign your own buffering to an open stream. Setbuf

syntax is

setbuf (stream. buffer);

where stream is a file pointer to an already-open stream, and buffer is a pointer to a character
array or is NULL.

Normally (Le. without user intervention), a standard I/O buffer is obtained through a call to
malloc(3C) (memalle(2) on the Series 500} upon the first call to gete or putc (which all I/O routines
eventually call). The standard I/O system normally buffers I/O in a buffer which is BUFSIZ bytes
long. Exceptions are Stdout, which, when directed to a terminal, is line-buffered, and stderr,
which is normally unbuffered.

50 Using C Library Routines

Setbuf enables you to change the buffer used for all standard I/O routines. For example, the
following code fragment causes the array buffer to be used for buffering:

FILE *fp;
char buffer [BUFSIZ] ;

fp = fopen(argv[l] , "r");

setbuf(fp, buffer);

This fragment shows the correct order of events. First, the file is opened (it need not be opened
for reading), then the buffering is assigned using setbuf. From that point on, any input taken
from fp is buffered through the array buffer.

Buffering can be eliminated altogether by specifying the NULL pointer in place of the buffer
name, as in

setbuf (fp, NULL);

This causes input or output using fp to be completely unbuffered.

Setbuf is limited to buffer sizes of either BUFSIZ bytes or zero. Setbuf assumes that the char­
acter array pointed to by "buffer"is BUFSIZ bytes. Passing setbuf a (non-NULL) pointer to a
smaller array can cause severe problems during operation because the standard I/O routines
may overwrite memory following the end of the too-small buffer.

Note: Using an automatic array as a standard I/O buffer can be dangerous. Automatic variables
are only defined in the code block in which they are declared. Thus, buffering which relies on
an automatic array is only in effect during the current code block (main program or function).
If you pass a file pointer to another function, and the stream pointed to by that file pointer is
buffered using an automatic array, then memory faults or other errors can occur. Here's the
rule: if you use an automatic array for stream buffering, the stream should be used and closed
only in the code block containing the array declaration. To avoid this restriction, use external
arrays for buffering:

external char buffer [BUFSIZ] ;

setbuf(fp. buffer);

Using C Library Routines 51

Setvbuf
Setvbuf, like setbuf, enables you to assign a character array for buffering, but also provides the
means to specify the size of the buffer to be used and the type of buffering to be done. Setvbuf
syntax is

setvbuf (stream. buffer. type. size)

where stream is a file pointer to an already-open stream, buffer is a pointer to a character array
or is NULL, type tells how stream is to be buffered, and size defines how large the buffer is.
Acceptable values for type (defined in stdio.h) include:

-IOFBF

-IOLBF

-IONBF

Input/ output is fully buffered.

Output is line buffered. The buffer is flushed each time a new line
is written, the buffer is full, or input is requested.

Input/ output is completely unbuffered.

If type -IONBF is specified, stream is totally unbuffered. Since no buffer is needed, values
for buffer and size are ignored. For example, the following two calls, though different, are
functionally identical:

setvbuf(fp. NULL. -IONBF. 0)
setbuf(fp. NULL)

When type is -IOFBF or -IOLBF, buffering for stream is determined by buffer and size. If
buffer is not the NULL pointer, it must point to a character array of size bytes. All buffering of
stream is then handled through this array.

FILE *fp;
char buffer [256]
char *filename;
int ... ret code ;
fp=fopen(filename. "w");

retcode=setvbuf(fp. buffer. =IOFBF. 256);
if (retcode !=O) error c);

This fragment causes stream fp to be buffered through the 256-byte array buffer. Serious run­
time errors can occur if the buffer array is not the size specified in the call to setvbuf (here 256
bytes). As with setbuf, it is dangerous to use an automatic array for the buffer. Note that the
return value of setvbuf can be used to verify that the request was completed successfully.

52 Using C Library Routines

If buffer is the NULL pointer and type is specified as -IOFBF or -IOLBF, setvbuf automatically
allocates a buffer of size bytes through a call to malloc (3c) on Series 200 computers or memallc

(2) on Series 500 computers. If size is zero, a buffer of size BUFSIZ will be used. This behavior
can be used to change the buffer size for a stream even if you still want the standard I/O system
to automatically allocate the buffer. This is particularly useful when a buffer larger than the
specified BUFSIZ is desired.

FILE * fp;
char * filename;
int retcode;

fp = fopen(filename, "rt")
retcode=setvbuf(fp, NULL, -IOFBF, 2048);

if(retcode !=O) errore);

This fragment buffers stream fp through a 2048-byte buffer that is allocated by the system.

mush.
The fflush routine forces all buffered data for an output stream to be written out to that file. Its
syntax is

fflush(stream) ;

where stream is a file pointer to an output stream.

Fflush is performed automatically by fdose (and, therefore, by exit). Therefore, there is often no
reason to call fflush explicitly. Situations do arise, however, where it is necessary to manually
fflush a stream. For example, data written to a terminal is line-buffered by default, which means
that the system waits for a new-line before writing the buffer onto the terminal screen. This is
often satisfactory, but there are times when you want whatever has been written so far to be
written to the screen without waiting for the new-line. In such situations, fflush must be used.

Another situation when explicit fflushing is necessary arises whenever you have written less than
a buffer-full of data to a file, and you want the contents of that file processed by another function,
or by an HP-UX command. Since less than a buffer-full of data was written, the data is still in
the buffer; the file is still empty. Performing an fflush causes the buffered data to be written out
to the file, enabling other functions or commands to utilize the file's contents.

Using C Library Routines 53

freopen
The final routine in this section is jreopen. As its name implies, jreopen enables you to, in a
single step, close a stream and then re-open it with a different type and/or file name. Its syntax
is

freopen (filename, type, stream);

where jilename is a pointer to a character string specifying the name of the source or destination
file for the newly-created stream. Type is identical to that of jopen discussed earlier. Stream
is a file pointer to the old stream, which is closed and then re-opened. The name of the file
pointer remains the same.

For example, the following program accepts lines of data from your terminal and writes them
into a file. When only a new-line is typed from the terminal, the program quits reading data,
and echos the contents of the file to the terminal.

#include <stdio.h>
mainO
{

}

FILE *fp, *oldfp;
char line [80] ,·*fgets();

fp = fopen("datafile", "w");
if(fp == NULL) {

}

fprintf(stderr, "Can't create datafile. \n");
exit(1);

fgets(line, 80, stdin);
while(line[O] != "\n") {

fputs(1ine, fp);
fgets(line, 80, stdin);

}

oldfp = freopen("datafile", "r", fp);
if(oldfp == NULL) {

}

fprintf(stderr, "Can't re-open datafile.\n");
exit (1) ;

while(fgets(line, 80, fp) != NULL)
fputs(line, stdout);

fclose(fp) ;
exit(O);

54 Using C Library Routines

Just like fopen, freopen returns a NULL pointer if an error occurs. If successful, freopen returns
the value of the old file pointer.

Freopen is commonly used to attach the names stdin, stdout, and stderr to other files, so that
the source or destination of these file pointers can be redirected. For example,

freopen("/usr/lib/data/datafile". Urn. stdin);

attaches stdin to the data-file /usr/lib/data/datafile. Other functions can now be called which
read from stdin, and the result is that their source of input has been redirected. Similarly,

freopen("/users/bill/archives/cal.a". "a". stdout);

attaches stdout to the indicated file, thus redirecting any future stdout data to that file.

Converting Between File Pointers and File Descriptors
A file pOinter is actually a pointer to a structure containing information about a stream. This
information includes a pointer to the beginning of the buffer, a pointer to the current location in
the buffer, a flag specifying whether the stream is open for reading, writing, or both, a count of
the characters in the buffer, and an integer called a file descriptor.

System calls, such as open and creat, return a file descriptor when a file is opened. System
calls use file descriptors to refer to open files in much the same way that library routines use
file pointers. (The main difference between using a file descriptor and using a file pointer is that
a file descriptor has no associated buffering.) Since a program often contains both system calls
and library routines, a way of converting between file pointers and file descriptors is provided.

NOTE

Extreme care should be exercised when converting between file point­
ers and file descriptors. Whenever you convert a file pointer to a file
descriptor, you should perform an !flush first.

In general, you should never convert file pointers to file descriptors unless
you need a file descriptor for a system call that provides a utility not
available in the C library package (such as dup(2) or fcntl(2)). Similarly,
file descriptors should never be converted to file pointers unless a file
descriptor has been created by a system call which provides a utility
not provided in the C library package, and you want to assign system
buffering to it.

Using C Library Routines 55

Two routines, fi/eno and fdopen, provide a way to convert between the two types of parameters.
Fi/eno is a macro which, given a file pointer, returns the associated file descriptor. Its syntax is

fileno(stream) ;

where stream is a file pointer to an open stream whose associated file descriptor is desired.
Thus,

FILE *fp;
int fd;

fp = fopen("file1". "r");
fd = fileno(fp);

returns the integer file descriptor in fd, associated with the file pointer fp.

The fdopen routine enables you to convert a file descriptor into a file pointer. Its syntax is

fdopen (fildes. type);

where fi/des is an integer file descriptor obtained from the open, dup, creat, or pipe system calls.
Type is the same as that for fopen discussed earlier. Thus,

int fd;
FILE *fp;

/* obtain fd via appropriate system call */

fp = fdopen(fd. "r");
if(fp == NULL) {

}

fprintf(stderr. "Can't convert file descriptor.\n");
exit(1);

converts the file descriptor fd into a file pointer, fp. Fdopen returns a NULL pointer if the
operation fails.

56 Using C Library Routines

Fdopen can be useful for opening a file in a way unlike any of the standard types of jopen.

include <fcntl.h>

int fd;
FILE *fp
char *filename;

fd= open(filename, O_WRONLYI O_CREAT, 0666);
fp= fdopen(fd, "W") ;
fseek(fd,OL,2)

This code fragment uses the open system call to open a file for general write access, then uses
jdopen to assign buffering to the file. The constants O_WRONLY and O_CREAT are defined
in the include file /usr/include/jcntl.n, and are described in open (2). (O_WRONLY causes open to
open the file for writing only; O-CREAT creates the file if it does not already exist.) This technique
opens the file in a way that does not correspond exactly to any of the available types in jopen:
"w" would truncate the current file contents, "r+" would fail if the file does not already exist
(and would allow reading of the file), and "a" does not permit seeking backwards and rewriting
the current file contents.

Using C Library Routines 57

Inter-Process Communication
So far, you've been communicating between an active process (your program) and a passive
object (a file). What if you want to communicate between two active processes? Suppose you
want to create a stream between two programs, with one program (process) pumping data onto
the stream, and the other reading data from the other end. How is this done?

The popen routine exists for this purpose. Its syntax is

popen (command , type);

where command is a pointer to a character string specifying a command line. Type is a pointer
to a single-character string which is either r (for reading) or w (for writing).

For example, suppose you are writing a program which processes text in some way. Your
program handles normal text perfectly, but unfortunately your source files are all coded in troff

constructs. If you could only filter out all those pesky troff constructs, your program would work
fine. Cheer up! It's easily done. There is an HP-UX command called deroff which filters out
troff constructs. All you have to do is make sure that all input to your program passes through
deroff first. Here's how:

#include <stdio.h>
mainO
{

FILE *popen(), *fp;

fp = popen("deroff /users/bin/text/*.tx", "r");
if(fp == NULL) {

}

fprintf(stderr, "Can't create stream.\n");
exit (1) ;

/* begin processing text; read text from fp! */

pclose(fp) ;

Popen returns a file pointer to the newly-opened stream. If an error occurs, a NULL pointer is
returned. When successfully executed, popen enables your program to read from the file pointer
fp, the data from which is the standard output from the deroff command. In this example,
deraff is invoked such that it processes all files in /users/bin/text which end with ".tx". Note
that popen's return value must be declared explicitly because it is not declared in stdio.h.

58 Using C Library Routines

Because deroff processes stdin if no arguments are given, the following popen call

fp = popen("deroff". "r");

enables your program to receive filtered text from stdin instead of from ordinary files. The
result of executing the previous example is exactly the same as if you had typed

deroff /users/bin/text/*.tx I yourprogram

at your keyboard in response to a shell prompt.

Streams that are opened by popen must be closed with pdose. Thus,

pclose(fp);

closes the stream created in the previous example.

If a type of w is specified instead of r, then the data flow is reversed, with the result that your
program supplies the data for the specified command.

Note th~t, though popen's return value is called a file pointer, it is actually somewhat different
than the file pointers you are already familiar with. In general, a file pointer returned by popen
should not be used in those previously-discussed library routines which modify file pointers
returned by fopen. Also, file pointers opened by popen must be closed with pdose; fdose is not
sufficient.

So far, popen has been characterized as a "filter-maker", in that streams to or from a command
have been created so that data can be modified in some way before being passed on. Sometimes,
however, popen is used to execute a command which supplies information valuable to the
program. For example, the find command accepts dot (.) as a valid directory name. Upon
receipt of a dot, find discovers the actual path name of dot by creating a stream from the pwd
command, as follows:

char dir[100] ;
FILE *popen(). *fp;

fp = popen("pwd". "r");
if(fp == NULL) {

}

fprintf(stderr. "Can't execute pwd.\n");
exit(1);

fgets(dir. 100. fp);

pclose(fp);

Using C Library Routines 59

The preceding example reads the output of the pwd command into the character array dir, thus
supplying the current value of dot. The following program creates a list of the login names of
users currently logged in:

#include <stdio.h>
main 0
{

}

char name [10] , line [80] , *fgets();
FILE *popen(), *fp;

fp = popen("who", "r");
if(fp == NULL) {

}

fprintf(stderr, "Can't execute who.\n");
exit(1) ;

printf("Users currently logged in:\n");
while(fgets(line, 80, fp) != NULL) {

sscanf (line, "%s", name);
printf("\t%s\n", name);

}

pclose(fp) ;
exit(O);

A stream is created for reading from the who command. Each line from who is read, and the
first field from each line is read and printed.

You may have only one popen-ed stream in a process at any given time.

60 Using C Library Routines

Part 2:
Math Routines
Described in this section are absolute value, power, square root, logarithmic, trigonometric, and
other functions performing many different kinds of mathmatical calculations.

An include file named math.h exists for use with these routines. Math.h contains type dec­
larations of all the math routines which do not return an int, and a definition of the constant
HUGE. Many math routines return a "huge" value when an error occurs, so HUGE is set equal
to this "huge" value, enabling you to check for errors easily. You need not include math.h in
your program if you remember to explicitly declare each math routine's return type, and if you
don't need HUGE.

Some of the math routines reside in the standard C library, /lib/libc.a. This library also contains
all the standard I/O routines and the system calls described in section 2 of the HP-UX Reference
manual. This library is loaded automatically by the C compiler, cc, so you need not worry about
explicitly telling the linker (ld) to search this library to find the functions contained in it. However,
many math routines reside in the library /lib/libm.a, which is not automatically loaded. Thus, if
you try to compile a program containing a math routine from libm.a, you get a complaint from
ld.

This is fixed in the following way. Suppose you have a program named yourprog.c, and this
program contains a math function from libm.a. To compile the program, type

$ cc yourprog.c -1m

The -I option causes ld to look for and search a library named /lib/libx.a, where x is the letter
specified after the -I option. Thus, this command line tells Id to search /lib/libm.a.

How do you know which functions reside in which library? The HP-UX Reference manual
provides gUidance here. /lib/libc.a contains all of section 2, plus all routines in section 3 having
the suffixes (3C) and (3S). /lib/libm.a contains all the routines in section 3 having the suffix
(3M). To aid you in deciding how to compile your programs, the routines discussed below
include references to the HP-UX Reference manual.

Using C Library Routines 61

Absolute Value Functions
The abs (abs(3C)) and fabs (found under floor(3M)) functions return the absolute value of their
integer or floating-point argument, respectively. For example, the following program calculates
integer absolute values until a zero is entered from the keyboard:

maine)
{

}

int value;

printf("Enter value: II);
scanf("%d", &value);
while(value != 0) {

printf("Absolute value of %d is %d.\n", value, abs(value»;
printf("Enter value: II);
scanf("%d", &value);

}
exit(O);

The floating-point equivalent of the previous program is shown below:

maine)
{

}

double value, fabs();

printf (IIEnter value: II);
scanf("%lf", &value);
while(value != 0.0) {

printf("Absolute value of %.12g is %.12g.\n", value, fabs(value»;
printf("Enter value: II);
scanf("%lf", &value);

}

exit(O);

The first program above can be compiled without the -I option, but the second must be compiled
using the -1m option.

62 Using C Library Routines

Power, Square Root, and Logarithmic Functions
This section describes the following five functions, all of which are found under exp(3M) in the
HP-UX Reference manual:

exp(x)

log (x)

loglO(x)

pow(x, y)

sqrt(x)

returns e to the x power.

returns the natural logarithm of x (In(x)).

returns the common logarithm of x (log(x)).

returns x to the y power.

returns the square root of x.

All functions return double values, and expect double arguments. Since their syntaxes are
similar, the following logarithm calculator example suffices for all five of these functions:

#inc1ude <math.h>
main (argc, argv)
int argc;
char *argv[];
{

double value;

sscanf(argv[l] , "%If", &va1ue);
printf("Natura1 logarithm of %.12g = %.12g\n", value, log(va1ue));
printf("Common logarithm of %.12g = %.12g\n", value, log10(value));

}

This program accepts its single argument, and returns the natural and common logarithms of
that argument.

All five of these functions must be compiled using the -1m option to cc.

Using C Library Routines 63

Trigonometric Functions
A full set of trigonometric functions are provided in the math library. They are as follows:

sin(x)

cos(x)

tan (x)

returns the sine of the radian argument x.

returns the cosine of the radian argument x.

returns the tangent of the radian argument x.

asin(x)

acos(x)

atan(x)

atan2(y, x)

sinh(x)

cosh(x)

tanh(x)

returns the arc sine of x in the range -pi/2 to pi/2, where -1 <= x <= 1.

returns the arc cosine of x in the range 0 to pi, where -1 < = x < = 1.

returns the arc tangent of x in the range -pi/2 to pi/2.

returns the arc tangent of y / x in the range -pi to pi.

returns the hyperbolic sine of the radian argument x.

returns the hyperbolic cosine of the radian argument x.

returns the hyperbolic tangent of x.

The following program uses some of these routines, as well as two routines from the previous
section, to obtain the dimensions and angles of a right triangle:

#include <stdio.h>
#include <math.h>
main 0
{

double sideA, sideB, sideC, anga, angb, tempC;
double pi = fabs(acos(-l.));
double torads = pi/180.;
double tOdegs = l80./pi;
double angc = 90. ;

printf("Using the following conventions for sides and angles:\nll);
triangle 0 ;
printf("\nEnter all known information:\n");
printf("\tA = II);
scanf("%lf", &sideA);
printf("\tB = II);
scanf("%lf", &sideB);
printf("\tC = II);
scanf("%lf", &sideC);
printf(lI\tAngle a = II);
scanf (1I%lf ", &anga);
printf("\tAngle b = II);
scanf("%lf", &angb);

64 Using C Library Routines

if(sideA && sideB && sideC) {
tempC = sqrt(pow(sideA. 2.) + pow(sideB. 2.»;
if(fabs(sideC - tempC) > 0.001) {

printf("Sides invalid.\n");
exit(l);

}

anga = acos(sideB/sideC) * todegs;
angb = 90. - anga;

} else if(sideA && sideB) {
sideC = sqrt(pow(sideA. 2.) + pow(sideB. 2.»;
anga = acos(sideB/sideC) * todegs;
angb = 90. - anga;

} else if(sideB && sideC) {
sideA = sqrt(pow(sideC. 2.) - pow(sideB. 2.»;
anga = acos(sideB/sideC) * todegs;
angb = 90. - anga;

} else if(sideA && sideC) {
sideB = sqrt(pow(sideC. 2.) - pow(sideA. 2.»;
anga = acos(sideB/sideC) * todegs;
angb = 90. - anga;

} else if(sideA) {
if(anga && angb) {

sideC = sideA/cos(angb*torads);
sideB = sqrt(pow(sideC. 2.) - pow(sideA. 2.»;

} else if(anga) {
sideC = sideA/sin(anga*torads);
sideB = sqrt(pow(sideC. 2.) - pow(sideA. 2.»;
angb = 90. - anga;

} else if(angb) {
sideC = sideA/cos(angb*torads);
sideB = sqrt(pow(sideC. 2.) - pow(sideA. 2.»;
anga = 90. - angb;

} else {

}

printf("Insufficient information.\n");
exit (1) ;

} else if(sideB) {
if(anga && angb) {

sideC = sideB/sin(angb*torads);
sideA = sqrt(pow(sideC. 2.) - pow(sideB. 2.»;

} else if(anga) {
sideC = sideB/cos(anga*torads);
sideA = sqrt(pow(sideC. 2.) - pow(sideB. 2.»;
angb = 90. - anga;

} else if(angb) {
sideC = sideB/sin(angb*torads);
sideA = sqrt(pow(sideC. 2.) - pow(sideB. 2.»;
anga = 90. - angb;

} else {
printf("Insufficient information.\n");

Using C Library Routines 65

}

exit(1);
}

} else if(sideC) {
if(anga && angb) {

sideA = sideC * cos(angb*torads);
sideB = sideC * sin(angb*torads);

} else if(anga) {
sideA = sideC * sin(anga*torads);
sideB = sideC * cos (anga*torads) ;
angb = 90. - anga;

} else if(angb) {
sideA = sideC * cos(angb*torads);
sideB = sideC * sin(angb*torads);
anga = 90. - angb;

} else {

}

printf("Insufficient information.\n");
exit (1) ;

} else {

}

printf("Insufficient information.\n");
exit(1);

printf("\n\tSide A = %.2f\t\tAngle a = %.2f degrees\n". sideA. anga);
printf("\tSide B %.2f\t\tAngle b = %.2f degrees\n". sideB. angb);
printf("\tSide C = %.2f\n". sideC);

triangle 0
{

}

FILE *fopen(). *tri;
char line [50] . *fgets();

tri = fopen("triangle". "r");
if(tri == NULL) {

}

printf("Cannot open triangle file.\n");
exit (1) ;

while(fgets(line. 50. tri) != NULL)
fputs(line. stdout);

fclose(tri) ;

66 Using C Library Routines

The triangle function prints out the contents of a file in the current directory called triangle.
The contents of this file should contain an ASCII approximation of a right triangle:

/1
/ I

/ I
/ a I

/ I
C / I B
/ I

/ I
/ I

/ b c _I
/ ________ 1_1

A

This triangle made up of slashes, vertical bars, and underscores, showing the naming convention
for the sides and angles. The program then asks for the known data; enter a value of zero for
those parameters that are unknown. The dimensions and angles are then calculated based on
the data you have supplied. If there is insufficient information, you are told about it.

The hyperbolic functions are found under sinh(3M) in the HP-UX Reference manual. All others
are found under trig(3M). Thus, the -1m argument must be used when compiling code containing
these functions.

Using C Library Routines 67

Miscellaneous Functions

Calculating Upper and Lower Bounds
Two functions, floor and ceil (see floor(3M)), enable you to obtain integers (returned as doubles)
defining an upper and a lower bound for a number or a series of numbers. Floor returns a
double precision representation of the the largest integer which is still not greater than floor's
argument. Similarly, ceil returns a double precision representation of the smallest integer which
is still greater than ceil's argument.

The following program returns the floor and ceiling values for the number specified as its argu­
ment:

#include <math.h>
main(argc. argv)
int argc;
char *argv[];
{

double value;

sscanf(argv[l]. ''%If''. &value);
printf("Floor = %g; Ceiling = %g\n". floor(value). ceil(value»;

}

If you type this in and run it, you see that floor and ceil provide two double values representing
the smallest range in which the numbers used to obtain that range will fit. For example, if you
have a program which reads three values from a source file, and these values are 4.79, 19.6,
and 21.1, you can get the smallest possible range in which these numbers fit by running floor
on each number (and keeping the smallest floor value), and then running ceil on each number
(and keeping the largest ceiling value). For the above three numbers, this yields a floor value of
4, and a ceiling value of 22.

Code containing these functions must be compiled using the -1m cc option. Math.h need not
be included if you remember to explicitly declare that these functions return double values.

68 Using C Library Routines

Calculating Remainders
This section covers two functions, fmod and modf. The fmod function (see floor{3M)) returns the
remainder (in double precision form) resulting from dividing fmod's first argument by its second.
For example,

fmod(10 .• 4.)

divides 10 by 4, and returns the remainder (2, in this case). The following program accepts two
numbers, divides the first by the second, and displays the results in a form showing the number
of times the divisor goes evenly into the dividend, and the remainder, if any.

#inc1ude <math.h>
main(argc. argv)
int argc;
char *argv[];
{

int result;
double number. div. rem;

sscanf(argv[1]. "%1£". &number);
sscanf(argv[3]. "%If". &div);

result = number/div;
printf("%g = (%d) (%g)". number. result. div);
if«rem = fmod(number. div» != 0.0)

printf(" + %g\n". rem);
}

This program is set up so that it can be invoked in sentence style. If you name the compiled
version of this program "divide", then you can say

$ divide 33.27 by 11

Since argv[2] is ignored in the code, "by" is harmless, and the two numbers are parsed correctly.

Code containing a call to fmod must be compiled with the -1m cc option. However, you need
not include math.h in your program, as long as you declare fmod's return type appropriately.

The other function, modf (see frexp{3C)), is not really a remainder function in the same sense
that fmod is a remainder function. In fmod, a division actually takes place. In modf, however,
no division takes place. Modf simply accepts a double value, and splits it into its integer and
fractional parts. Its syntax is

modf (value. iptr);

Using C Library Routines 69

where value is the number to be split into two parts, and iptr is a pointer to a double variable
where the integer part of value is to be stored. Modf s return value is the signed fractional part
of value.

The following program shows mod! in action:

main (argc, argv)
int argc;
char *argv [] ;
{

}

double value, iptr, frac, modf();

sscanf(argv[l] , "%1£", &value);
frac = modf (value , &iptr);
printf("Integer part: %g; Fractional part: %g\n", iptr, frac);

The program accepts one argument, the value, and then prints the integer and fractional parts
of that value. Note that the address of iptr is passed to mod!, because mod! expects the address
of a double variable where the integer part can be stored.

Code containing calls to mod! does not require the -1m option during compilation. Also, the
math.h include file is of no use to mod!, so it can be omitted.

Calculating A Hypotenuse
The hypot function (see hypot(3M)} returns the square root of the sum of the squares of its two
arguments, yielding the length of the hypotenuse of a right triangle, or the Euclidian Distance.

Thus, in the previous program which calculated the sides and angles of a right triangle, the line
of code which read

sideC = sqrt(pow(sideA, 2.) + pow(sideB, 2.»;

could be replaced with

sideC = hypot(sideA, sideB);

thus eliminating one function call (hypot contains a call to sqrt).

Code containing calls to hypot must be compiled using the -1m option to cc.

70 Using C Library Routines

Generating Random Numbers
The rand and srand routines (see rand(3C)) exist for the generation of random numbers. Rand is
the random number generator itself, and srand enables you to specify a starting point (or seed)

for rand.

The following program simply sets up an infinite loop and lets rand run for awhile (to terminate
it, just press BREAK, or its equivalent):

mainO
{

}

unsigned value;

srand(1);
for(; ;) {

}

value = rand 0 ;
printf(IIRandom number is %u\nll, value);
sleep(1) ;

Note that rand and srand deal only with unsigned integers. If you let this program run for
awhile, you'll notice that the random values returned are quite large, and don't often venture
below 1000. If your application requires smaller random numbers, divide the value returned by
rand by some appropriate divisor until a number in the desired range is obtained.

Srand initializes the random number generator to a particular starting point. In the above
program, 1 is used, but you can specify any positive integer you like.

The sleep library routine causes the program to "pause" for the number of seconds specified (1,
in this case).

Using C Library Routines 71

Floating-Point Exponentiation Routines
Two routines, Jrexp and ldexp (see Jrexp(3C)) , are covered in this section. Frexp accepts a
double value, and returns two values, x and n, such that

where x is a double quantity of magnitude less than 1, and n is an integer exponent. Frexp's

syntax is

frexp(value, eptr);

where value is the value to be processed, and eptr is a pointer to an integer variable where the
exponent n is to be stored. The quantity x is returned as Jrexp's return value.

The following program accepts a number argument and uses Jrexp to output that number's
representation in the form shown above:

main (argc, argv)
int argc;
char *argv[] ;
{

}

double value, x, frexp();
int eptr;

sscanf (argv [1], n%lf n, &value);
x = frexp(value, &eptr);
printf(n%g = %g * 2-%d\nn, value, x, eptr);

Ldexp accepts a double value and an integer exponent exp, and returns a double quantity equal
to

<value> * 2- <exponent>

The following program accepts two number arguments, value and exp, and outputs the result:

main (argc, argv)
int argc;
char *argv [] ;
{

}

double value, result, ldexp();
int exp;

sscanf(argv[l] , n%lf n, &value);
sscanf(argv[2] , n%d n, &exp);
result = ldexp (value , exp);
printf(n%g * 2-%d = %g\nn, value, exp, result);

Neither of these routines require math.h or the use of the -1m cc option.

72 Using C Library Routines

Part 3:
String Manipulations
Character Conversion
and Classification
This section discusses those routines found under conv(3C) and ctype(3C} which enable you to
convert between upper- and lower-case, and classify characters as digits, non-printing, upper-case,
etc.

Converting Between Uppercase and Lowercase
Four routines are documented under conv(3C) which enable you to convert between upper- and
lowercase. They are toupper, t%wer, _toupper, and _t%wer.

Toupper and t%wer are functions which accept a single integer argument in the range -1
through 255. If the integer taken as a character represents a lower-case character, toupper

returns the corresponding upper-case character. Similarly, t%wer returns the corresponding
lower-case character. Both routines return the argument unchanged if it does not represent a
lower-case character (toupper) or an upper-case character (t%wer).

_toupper and _t%wer are macros defined in ctype.h. _toupper accepts a single integer argument
which must represent a lower-case character; the corresponding upper-case character is returned.
Similarly, _t%wer must be given an upper-case character, and returns the corresponding lower­
case character. If an argument is specified which is not a lower-case character Ltoupper} or an
upper-case character Lt%wer}, garbage is returned.

The macro versions of these routines are faster than the functions, so if you can guarantee that
only lower-case or upper-case characters are passed to the macros, you should probably use
them. However, the function versions are handy for tasks like

for(i=O; array[i] != NULL; i++)
array[i] = toupper(array[i]);

which converts every lowercase character found in array to uppercase. The functions enable
you to be more lenient about the arguments passed to them. In the above program fragment,
no argument checking is needed; if the argument isn't a lowercase character, it is returned
unchanged.

Using C Library Routines 73

Character Classification
The ctype(3C) entry in the HP-UX Reference lists routines which test their single argument and
return a non-zero value if the test is positive, and 0 otherwise.

All of these routines are macros defined in ctype.h. Because their syntaxes are identical, the
following example suffices for all ctype macros:

for(i=O; array[i] != NULL; i++) {
if(islower(array[i]»

array[i] = _toupper(array[i]);
}

This program fragment shows one way to change all occurrences of a lower-case character in
array to upper-case using the macro _toupper. The macro is/ower is used to make sure that only
lower-case characters are passed to _toupper.

74 Using C Library Routines

String Manipulation
String(3C) in the HP-UX Reference manual documents an extensive list of string manipulation
routines enabling you to perform several operations on character strings. This section describes
the string(3C) package in detail.

Concatenating Strings
Strcat and strncat enable you to append a copy of one string onto the end of another. Their
syntaxes are:

strcat(sl. s2);
strncat(sl. s2. n);

where sl and s2 are character pointers to NULL-terminated character strings. Strcat appends
the entire string pointed to by s2 (up to the first NULL character encountered) onto the end of
string sl. Strncat does the same thing, except that at most n characters are appended to sl
(or up to a NULL character, whichever comes first). (Note that string s2 need not be NULL­
terminated when using strncat if n is less than or equal to the length of s2.) Both routines return
a character pointer to the NULL-terminated result.

Neither of these routines checks to make sure that there is room in s1 for the additional
characters of s2. Thus, to be safe, s1 should always be a declared array having plenty of space
for the additional characters of s2, plus a terminating NULL character.

Copying Strings
Strcpy and strncpy copy one string of characters into another. Their syntaxes are:

strcpy(sl. s2);
strncpy(sl. s2. n);

where s2 is a character pointer to the string to be copied, and s1 is a character pointer to the
beginning of the string into which the contents of string sl are copied. Strcpy copies the entire
string, up to (and including) the first NULL encountered. Strncpy copies up to n characters, or
up to (and including) the first encountered NULL, whichever occurs first. (String s2 need not
be NULL-terminated when using strncpy if n is less than or equal to the length of s2.) Both
routines return the value of s1.

Using C Library Routines 75

The following program uses the strcat routine discussed earlier and strcpy to build a character
string representing the lower-case alphabet, one character at a time.

#include <stdio.h>
main 0
{

}

int b = 'b', Z = 'z', i;
char alpha [30] , chr[4];

chr [1] = NULL;
strcpy (alpha , lIall);
printf(lI%s\n ll , alpha);

for(i = b; i <= z; i++) {
chr[O] = i;
strcat(alpha, chr);
printf(lI%s\n ll , alpha);

}

The array chr is always going to be a two-character array consisting of the next character in
the alphabet followed by NULL. Thus, the second element of chr is set to NULL early in the
program. The first chr element is then successively set to the next lower-case character in the
for loop, and the resulting two-character string is concatenated onto the end of the alphabet
assembled so far in alpha. Note the use of strcpy to initialize alpha. Remember that C transforms
one or more characters enclosed in double quotes into a character pointer to those characters
followed by a NULL. Thus, the strcpy statement above copies the character "a" followed by a
NULL character into alpha.

There are some things to be aware of when using strcat, strncat, strcpy, and strncpy. These
routines all modify string sl in some way, but none of them check for overflow in that string.
Therefore, be sure there is enough room in sl to hold the added or copied characters plus a
terminating NULL. Also, be sure you use a character array for sl (not just a character pointer),
especially when using strcat or strncat. This is because an explicitly-declared array has sufficient
memory allocated to it to contain all of its elements, but a character pointer simply points to a
single location in memory. Concatenating a string to the end of a string contained in an array is
guaranteed to work, provided the array is large enough. However, concatenating a string to a
string of characters referenced by a simple character pointer is dangerous, since the concatenated
characters could overwrite data in memory. For example,

char array [100] , *ptr = lIabcdefll;

strcat(array, ptr);

76 Using C Library Routines

works fine, since you are guaranteed that 100 storage elements have been set aside for the
array. However,

char *ptr1 = "abcdef" , *ptr2 "ghijkl";

strcat(ptr1, ptr2);

is asking for trouble. Although C makes sure that there is enough room for the initializing strings
("abcdef" and "ghijkl" in this example), there are no guarantees that there is enough room to
add characters to the end of one of these strings. Therefore, the last fragment could easily
overwrite valid data occurring after the string pointed to by ptr 1.

Since string s2 is not modified, you can use arrays or character pointers with no ill effects.

Comparing Strings
Strcmp and strncmp compare two strings and return an integer indicating the result of the
comparison. Their syntaxes are:

str~mp(sl, s2);
strncmp(s 1, s2, n);

where s1 and s2 are character pointers to the NULL-terminated character strings to be compared.
Strcmp compares the entire strings, stopping as soon as the result is determined. Strncmp
compares at most n characters of both strings (neither string need be NULL-terminated if n is
less than or equal to the length of the shorter string). The integer returned uses the follOWing
convention:

<0 s1 is lexicographically less than 82;

=0 s1 and s2 are equal;

>0 s1 is lexicographically greater than s2.

The following program fragment uses strncmp to analyze the contents of a file coded with the
man macros (see man(7)). It reads each line of the file and keeps a count of the number of times
selected macros are used, and prints a summary of its findings at the end.

#include <stdio.h>
main (argc, argv)
int argc;
char *argv [] ;
{

char *fgets(), line [100] ;
FILE *fp;
int nsh, npp, ntp, nrs, nre, npd, nip. nmisc, nlines;

Using. C Library Routines 77

}

nsh = npp = ntp nrs nre npd nip = nmisc nlines 0;

if(argc != 2) {
fprintf(stderr, "Usage: count file\n");
exit(2);

}

fp = fopen(argv[l] , "r");
if(fp == NULL) {

fprintf(stderr, "Can't open %s.\n", argv[l]);
exit(l);

}

while(fgets(line, 100, fp) != NULL) {
if (strncmp(line , II.SHII, 3) == 0)

nsh++;
else if (strncmp(line , ".PPII, 3)

npp++;
else if (strncmp(line , II.TPII, 3)

ntp++;
else if (strncmp(line , ".RS", 3)

nrs++;
else if (strncmp(line , II.RE", 3)

nre++;
else if (strncmp(line , ".PD", 3)

npd++;
else if (strncmp(line , II.IPII, 3)

nip++;
else if (line [0] -- ' . ')

nmisc++;
nlines++;

}

printf("No. of lines: %d\n\n" , nlines);
printf("No. of .SH's: %d\n", nsh) ;
printf("No. of .PP's: %d\n", npp) ;
printf("No. of .TP's: %d\n", ntp) ;
printf("No. of .RS's: %d\n", nrs) ;
printf("No. of .RE's: %d\n", nre) ;
printf("No. of .PD's: %d\n", npd) ;
printf("No. of .IP's: %d\n", nip) ;

0)

0)

0)

0)

0)

0)

printf("No. of misc. macros: %d\n", nmisc);

fclose(fp);
exit(O);

78 Using C Library Routines

In the above program, strncmp is used to compare the first three characters of each line read.
If the first three characters match a particular macro, the appropriate counter is incremented.
If the line begins with ".", but is not one of the macros being searched for, the "miscellaneous"
counter is incremented. The total number of lines in the file is also given.

Finding the Length of a String
The strlen routine returns an integer specifying the number of non-NULL characters in a string.
Its syntax is:

strlen(s) ;

where s is a character pointer to the NULL-terminated string whose length is to be taken. For
example, if you execute

len = strlen (string) ;

then the integer len contains the total number of non-\ s-l NULL \ s+ 1 characters in the string
pointed to by string. Thus,

string [len]

points to the terminating NULL in string

Finding Characters in Strings
The strchr, strrchr, and strpbrk routines enable you to locate a particular character within a
string.

Strchr and strrchr return a character pointer to an occurrence of a specified character in a string.
Their syntaxes are:

strchr(s. c);
strrchr(s. c);

where s is a character pointer to the string of interest, and c is a variable of type char specifying
the character to search for.

Using C Library Routines 79

Strchr returns a character pointer to the first occurrence of character c in string s. Similarly,
strrchr returns a character pointer to the last occurrence in string s. Both routines return a
NULL if the character does not occur in the string pointed to by s. For example,

char *ptr. *strchr(). string[100];

while«ptr = strchr(string. '~') != NULL)
*ptr = '#';

replaces all occurrences of "@" in the array string with "#", starting from the beginning of the
array and working toward the end. The same operation can be done using

while«ptr = strrchr(string. '~')) != NULL)
*ptr = '#';

which replaces all @'s with #' s, starting from the end of the array, working backward toward
the beginning.

The strpbrk routine returns a character pointer to the first occurrence in string sl of any character
contained in string s2, or NULL if none of the characters in 82 occur in sl. Its syntax is:

strpbrk(sl. s2);

For example, suppose you have to read lines of input in which are embedded numerical data
which must be read. For simplicity, assume that the following conventions are used:

• Positive numbers do not begin with "+";

• Fractional numbers always begin with zero, as in 0.25;

• The first occurrence of a digit in the string signals the beginning of the number to be read.

Given these rules, the following code fragment does the job:

char line [100] • *chrs = "-0123456789". *ptr;
float value;

ptr = strpbrk(line. chrs);
sseanf (ptr. "%f". &value);

The character pointer chrs is initialized to point to a string of characters which might introduce
the embedded number. Strpbrk then finds the first occurrence of one of these characters in line,
and returns a pointer to that location in ptr. Finally, ptr is passed to sscanj, which interprets
ptr as if it were a pointer to the beginning of a string from which input is to be taken. The
number is read correctly because ptr points to the beginning of a number, and because the %f
conversion terminates at the first inappropriate character.

80 Using C Library Routines

Miscellaneous String Routines

Finding Characters Common to Two Strings
The strspn and strcspn routines return an integer giving the length of the initial segment of string
s1 which consists entirely of characters found in string s2. Strcspn is similar, but returns an
integer giving the length of the initial segment of sl which consists entirely of characters not
found in string s2. Their syntaxes are:

strspn(sl, s2);
strcspn(sl, s2);

For example, suppose you have the following two strings:

"A tattle-tale never wins."

for string s1, and

" -Aatle"

for s2. Executing

strspn(s1, s2);

with the strings shown returns a value of 14, since the first 14 characters in s1 all occur in s2
- "A tattle-tale". If you execute

strcspn(s1, s2);

using the same strings, you get 0, because there is no initial segment of s1 which contains
characters not found in s2.

Using C Library Routines 81

Breaking a String into Tokens
A token is a string of characters delimited by one or more token delimiters. The strtok routine
divides string s1 into one or more tokens. The token separators consist of any characters
contained in string s2. Its syntax is:

strtok(sl. s2);

where s1 is a character pointer to the string which is to be broken up into tokens, and s2 is
a character pointer to a string consisting of those characters which are to be treated as token
separators.

Strtok returns the next token from s1 each time it is called. The first time strtok is called, both
s1 and s2 must be specified. On subsequent calls, however, s1 need not be specified (a NULL is
specified in its place). Strtok remembers the string from call to call. String s2 must be specified
each call, but need not contain the same characters (token separators) each time.

Strtok returns a pointer to the beginning of the next token, and writes a NULL character into
s1 immediately following the end of the returned token. Strtok returns a NULL when no tokens
remain.

For example, suppose you are reading lines from /etc/gettydefs, which is the speed table for
getty(lM} - see gettydefs(5}. The lines in this file contain several fields delimited by pound signs
(#). Thus, the following code could be used to read the fields of each line:

int count = 0;
char *delims = "#". *token. *arg1. *strtok(). line [256] ;
arg1 = line;

while«token = strtok(arg1. delims) != NULL) {
count++ ;"

}

printf("field %d: %s\n". count. token);
if(count == 1)

arg1 = NULL;

This code sees to it that strtok's first argument is NULL after the first call. Also, note that
delims did not change from call to call, but it could have. This greatly increases the power of
strtok, since it enables you to change the token delimiters between calls.

82 Using C Library Routines

Part 4:
Date and Time Manipulation
Ctime(3C) describes a set of routines which enable you to access the date and time as maintained
by the system clock. This package knows about daylight saving time, and automatically converts
between standard time and daylight saving time when appropriate.

Most of the ctime routines require the quantity returned by time(2), which is the number of
seconds that have elapsed since 00:00:00 GMT (Greenwich Mean Time), January 1, 1970.

The ctime routine converts the time(2) value into a 26-character ASCII string of the form

Fri May 11 09:53:03 1984\n\0

where "\n" is a new-line character, and "\0" is a terminating NULL character. Ctime's syntax
is:

ct:i..me (value) ;

where value is a pointer to a long integer value representing the number of elapsed seconds
since 00:00:00 GMT, January 1, 1970 (as returned by time(2)). Note that value is a pointer to
the quantity returned by time(2), not just the quantity itself. Using time(2) and ctime, you can
write your own simplified version of the date(1) command:

#include <stdio.h>
maine)
{

}

char *str. *ctime();
long time(). nseconds;

nseconds = time«long *)0);
str = ctime(&nseconds);
printf("%s". str);

Using C Library Routines 83

The rest of the routines in ctime(3C) require the include file time.h, which contains the definition
of a structure called tm. This structure is made up of several variables which contain the various
components of the date and time. It looks as follows:

struct tm {
int tm_sec;
int tm_min;
int tm_hour;
int tm_mday;
int tm_mon;
int tm_year;
int tm_wday;
int tm_yday;
int tm_isdst;

};

The meaning associated with each structure member is:

the "seconds" portion of the system's 24-hour clock time;

the "minutes" portion of the system's 24-hour clock time;

the "hours" portion of the system's 24-hour clock time;

the day of the month, in the range 1 thru 31;

the month of the year, in the range 0 thru 11 (0 = January);

the current year - 1900;

the day of the week, in the range 0 thru 6 (0 = Sunday);

the day of the year, in the range 0 thru 365;

a flag which is non-zero if daylight saving time is in effect.

The localtime and gmtime routines accept a pointer to a quantity such as returned by time(2),

and fill in the various components of the tm structure. Localtime corrects the time for the local
time zone and possible daylight saving time, while gmtime converts directly to GMT time (this
is the time used by HP-UX). Both routines return a pointer to a structure of type tm which can
be used to access the various components of the tm structure.

84 Using C Library Routines

For example, the following code fragment assigns values to the tm structure members for the
local time zone:

#include <time.h>

struct tm *ptr, *localtime();
long time(), nseconds;

nseconds = time«long *)0);
ptr = localtime(&nseconds);

Once this code is executed, you can use ptr to access the different components of the local time.
For example, ptr->tm_mon references the month of the year, and ptr->tm_wday references
the day of the week. (Gmtime is used in exactly the same way, so this example suffices for it
also).

The asctime routine converts the time contained in a tm structure into \s-lASCII\s+ 1 represen­
tation such as that returned by date(l} and ctime. Its syntax is:

asctime (ptr) ;

where ptr is a pointer to a structure of type tm whose members have previously been assigned
values with localtime or gmtime, or explicitly by you. Asctime returns a character pointer to the
same NULL-terminated 26-character string as returned by ctime.

Asctime provides a way for you to obtain the current time, modify it explicitly in some way, and
then print the result in ASCII form. The date command shown earlier can be re-written using
localtime and asctime:

#include <stdio.h>
#include <time.h>
maine)
{

long time(), nseconds;
struct tm *ptr, *localtime();
char *string, *asctime();

nseconds = time«long *)0);
ptr = localtime(&nseconds);

/* the user may modify the current time in tm here *1

}

string = asctime(ptr);
printf(lI%sll, string);

Using C Library Routines 85

This program illustrates a rather indirect way to obtain the date, but it does enable you to modify
the date stored in tm before you print it out. If all you want to do is print the date, the qUickest
way is to use the time/ctime combination.

Of all the ctime routines, perhaps the most useful is localtime. It enables you to break the current
time up into referencable chunks which can then be examined for such applications as personal
calendar programs, program schedulers, etc. Many of the tm values can be used as indices into
arrays containing strings identifying months and days. For example, declaring an external array
like

char *month [] { "January". "February". "March". "April".

};

"May". "June". "July". "August". "September".
"October". "November". "December"

enables you to use tm_mon as an index into this array to obtain the actual month name. The
same thing can be done with tm_ wday if you initialize an array containing the names of the
days of the week. The ctime(3C) package makes it easy to design programs which depend upon
the time or date. Try creating your own versions of calendar(l), at(l), or even cron(lM)!

86 Using C Library Routines

Index

a
abs (absolute value function)
acos function .. .
asctime function .. .
asin function
atan function
atan2 function

b

62
64
85
64
64
64

breaking strings into tokens .. 82
BUFSIZ .. 3

c
calculating remainders .. 69
char declaration replaced by int .. 5
character classification .. 74
character conversion characters ... 9, 17
character file I/O ... 29-32
character push-back .. 32
characters, character conversion ... 9, 17
characters, floating-point conversion 10, 17
characters, format conversion ... 8, 16
characters, integer conversion ... 9, 16
characters, literal ... 11, 14
clearerr (clear file read/write error status) 44
comparing strings .. 77
concatenating strings ... 75
conversion characters, character ... 9, 17
conversion characters, floating-point 10, 17
conversion characters, format ... 8, 16
conversion characters, integer 9, 16
conversion specifications, format .. 7
converting between file pointers and file descriptors 55
copying strings .. 75
cos function .. 64

Index 87

cosh function
ctime function
ctype function

... 64

d
date and time manipulation

e

83
74

83-86

exponentiation function .. 63
exponentiation function, floating-point 72

f
fabs (floating-point absolute value) .. 62
fclose ... 50
fdopen .. 56
feof (end-of-file status inquiry) ... 42
ferror (read/write error file status inquiry) .. 44
fflush ... 53
fflush before converting file pOinter/file descriptor 55
fgetc (get character from a file) .. 31
fgets ... 33
file descriptor/file pointer conversion 55
file I/O:

binary (non-ASCII) data .. 36
formatted 35-36
single-character .. 29-32
strings .. 33

file open for read and write ... 49
file pointer ... 27
file pOinter/file descriptor conversion 55
fileno ... 56
filters .. 6
finding characters common to two strings 81
floating-point exponentiation function 72
fmod function .. 69
fopen .. 27-28
format conversion characters ... 8, 16
format conversion specifications ... 7, 15
formatted I/O ... 7
fprintf .. 35

88 Index

fputc (put character in a file) .. 31
fputs ... 33
fread .. 38-41
freopen ... :............. 54
frexp function .. 71
fscanf .. 35
fseek ... 46
ftell .. 46
fwrite .. 38-41

9
gets function reads strings into array 6
getw .. 36
gmtime function ... 85

h
hypo~enuse .. 70

i
int declared instead of char .. 5
integer conversion characters ... 9, 16
inter-process communication ... 58-60
I/O:

formatted 7
ordinary files ... 26
single-character .. 5
string .. 6
strings ... 21-25

I
ldexp function .. 71
literal characters ., . : .. 11, 14
localtime function .. 85
logarithmic functions .. 63
lowercase/uppercase conversion ... 73
lower /upper bounds for numbers .. 68

Index 89

m
math routines .. 61-72
math.h include file ... 61
mod! function .. 69, 70

o
offset from file/stream pointer .. 46
open ordinary file .. 26

p
popen .. 58
power math function .. 63
print! examples .. 18-20
print! for formatted output .. 7
print! output formatting .. 14-20
putchar to output newline ... 5
puts function copies character array to stdout 6
putw ... 36

r
rand function ... 71
random numbers .. 71
remainders, calculating .. 69
reposition stream (file) I/O operations 45, 49
rewind .. 45

5
scan! for formatted input ... 7
setbu! ... 50
setubu! .. 52
sin function .. 64
single-character I/O ... 5
sinh function ... 64
specifications, format conversion 7
square root function .. 63
srand function .. 71
standard error (see stderr) .. 1-4
standard input (see stdin) ... 1-6
standard output (see stdout) ... 1-6
stderr .. 1-6

90 Index

stdin .. 1-6
stdout ... 1-6
strcat function .. 75
strchr function .. 77
strcmp function ... 77
strcspn function ... 81
stream (file pointer) control routines 50-55
stream status ... 42
string file I/O '. .. 33
string I/O .. 6, 21-25
string manipulations ... 73-82
string:

read data from .. 21
write data to ... 24

strings:
breaking into tokens .. 82
comparing ... 77
concatenating ... 75
copying ... 75
finding characters common to two strings 81
finding characters in .. 77
finding length of ... 77

strlen function .. 77
strncat function .. 75
strncmp function .. 77
strrchr function .. 77
strspn function .. 81
strtok function .. 82

t
tan function .. 64
tanh function ... 64
time and date manipulation ... 83-86
_tolower .. 73-74
_toupper ... 73-74
triangle function ... 67
trigonometric functions .. 64

u
ungetc (place character back on input stream) 32
uppercase/lowercase conversion ... 73
upper flower bounds for numbers .. 68

Index 91

Table of Contents
Lint C Program Checker

Introduction. .. 1
Error Detection .. 1
Problem Detection .. 2

Problem Code: Unused Variables and Functions .. 3
Problem Code: Set/Used Information. .. 4
Problem Code: Unreachable Code 5
Problem Code: Function Value. .. 5
Problem Code: Type Matching 6
Problem Code: Portability .. 8
Problem Code: Strange Constructions .. 10

How to Use Lint .. 12
Directives 14

Lint C Program Checker
Introduction
Lint is a program checker and verifier for C source code. Its main purpose is to supply the
programmer with warning messages about problems with the source code's style, efficiency,
portability, and consistency. Once the C code passes through the compiler with no errors, lint
can be used to locate areas undetected by the compiler that may require corrections.

Error messages and lint warnings are sent to the standard error file (the terminal by default).
Once the code errors are corrected, the C source file(s) should be run through the C compiler
to produce the necessary object code.

Error Detection
Lint detects all code errors that can be detected by the C compiler and produces an error
message such as:

illegal initialization

These errors must be corrected before the compiler can be used to produce object code.

While lint can be used for error detection, it cannot recover from all of the code errors it finds.
If lint encounters an error that it cannot recover from, it terminates after sending the message:

cannot recover from earlier errors--goodbye!

If Lint detects more than its limit of 30 coding errors in the source file(s) , it terminates after
sending the error message:

too many errors

Since lint cannot recover from certain errors, and because of the limited number of errors it
can handle, the compiler should be used instead for error detection. After all errors that the
compiler can detect have been corrected, lint can be used to help find bugs and inefficiencies in
the source code.

Lint C Program Checker 1

Problem Detection
Remember that a compiler reports errors only when it encounters program source code that
cannot be converted into object code. The main purpose of lint is to find problem areas in C
source code that it considers to be inefficient, nonportable, bad style, or a possible bug, but
which the C compiler accepts as error-free because it can be converted into object code.

Comments about problems that are local to a function are produced as each problem is detected.
They have the form:

warning: <message text>

Information about external functions and variables is collected and analyzed after lint has pro­
cessed the files handed to it. At that time, if a problem has been detected, it sends a warning
message with the form:

<message text>

followed by a list of external names causing the message and the file where the problem occurred.

Code causing lint to issue a warning message should be analyzed to determine the source of the
problem. Sometimes the programmer has a valid reason for writing the problem code. Usually,
though, this is not the case. Lint can be very helpful in uncovering subtle programming errors.

Lint checks the source code for certain conditions, about which it issues warning messages.
These can be grouped into the following categories:

1. variable or function is declared but not used;

2. variable is used before it is set;

3. portion of code is unreachable;

4. function values are used incorrectly;

5. type matching does not adhere strictly to C rules;

6. code has portability problems;

7. code construction is strange.

2 Lint C Program Checker

The code that you write may have constructions in it that lint objects to but that are necessary
to its application. Warning messages about problem areas that you know about and do not plan
to correct provide useless information and make helpful messages harder to find. There are two
methods for suppressing warning messages from lint that you do not need to see. The use of lint
options is one. The lint command can be called with any combination of its defined option set.
Each option has lint ignore a different problem area. Ths other method is to insert lint directives
into the source code. Lint directives are discussed later.

Problem Code: Unused Variables and Functions
Lint objects if source code declares a variable that is never used or defines a function that is
never called. Unused variables and functions are considered bad style because their declarations
clutter the code. They can also be the cause of a program bug if their use is essential.

An unused local variable can result in one of two lint warning messages. If a variable is defined
to be static and is not used, lint responds with:

warning: static variable <name> unused

Unused automatic variables cause the message:

warning: <name> unused in function <name>

A function or external variable that is unused causes the message:

name defined but never used

followed by the function or variable name and the file in which it was defined. Lint also looks at
the special case where one of the parameters of a function is not used. The warning message
is:

warning: argument unused in function: <arg_name> in <func_name>

If functions or external variables are declared but never used or defined, lint responds with

name declared but never used or defined

followed by a list of variable and function names and the names of files where they were declared.

Lint C Program Checker 3

Suppressing Lint
Sometimes it is necessary to have unused function parameters to support consistent interfaces
between functions. The -v option can be used with lint to have warnings about unused parameters
suppressed. However, the -v option does not suppress comments when parameters are defined
as register variables. Unused register variables result in inefficient use of computer's resources,
because qUick-access hardware is frequently allocated for their storage.

If lint is run on a file which is linked with other files at compile time, many external variables
and functions can be defined but not used, as well as used but not defined. If there is no
guarantee that the definition of an external object is always seen before the object code is used,
it is declared extern. The -u option can be used to stop complaints about all external objects,
whether or not they are declared extern. If you want to inhibit complaints about only the extern
declared functions and variables, use the -x option.

Problem Code: Set/Used Information
A problem bug exists in a program if a variable's value is used before it is assigned. Although
lint attempts to detect occurrences of this, it takes into account only the physical location of the
code. If code using a static or external variable is located before the variable is given a value,
the message set is:

warning: <name> may be used before set

Since static and external variables are always initialized to zero, this may not point out a program
bug. Lint also objects if automatic variables are set in a function but not used. The message
given is:

warning: <name> set but not used in function

4 Lint C Program Checker

Problem Code: Unreachable Code
Lint checks for three types of unreachable code. Any statement following a goto, break,
continue, or return statement must either be labeled or reside in an outer block for lint to
consider it reachable. If neither is the case, lint responds with:

warning: statement not reached

The same message is given if lint finds an infinite loop. It only checks for the infinite loop cases
of while(1) and for(;;). The third item that lint looks for is a loop that cannot be entered from
the top. If one is found, then the message sent is:

warning: loop not entered from top

Lint's detection of unreachable code is by no means perfect. Warning messages can be sent
about valid code. It can also overlook commenting on code that canot be reached. An example
of this is the fact that lint does not know if a called function ever returns to the calling function
(e.g., exit). Lint does not identify code following such a function as being unreachable.

Suppressing Lint
Programs that are generated by yacc or lex can have many unreachable break statements.
Normally, each one causes a complaint from lint. The -b option can be used to force lint to
ignore unreachable break statements.

Problem Code: Function Value
The C compiler allows a function containing both the statement

returnO;

and the statement

return(expression) ;

to pass through without complaint. Lint, however, detects this inconsistency and responds with
the message:

warning: function <name> has return (e) ; and return;

Lint C Program Checker 5

The most serious difficulty with this is detecting when a function return is implied by flow of
control reaching the end of the function. This can be seen with a simple example:

f(a)
{

}

if (a) return (3);
gO;

Notice that if a tests false, f will call g and then return with no defined value. This will trigger
a message for lint. If g (like exit) never returns, the message will still be produced when in
fact nothing is wrong. In practice, some potentially serious bugs have been discovered by this
feature.

On a global scale, lint detects cases where a function returns a value that is sometimes or
never used. When the value is never used, it may constitute an inefficiency in the function
definition. When the value is sometimes used, it may represent bad style (e.g., not testing for
error conditions).

The dual problem - using a function value when the function does not return one - is also
detected. This is a serious problem.

Problem Code: Type Matching
The C compiler does not strictly enforce the C language type matching rules. At the loss of
some type checking, the C compiler gains speed. An important role of lint is to enforce the type
checking that the compiler neglects. It does this in four areas:

1. pointer types;

2. long and int type matching;

3. enumerations;

4. operations on structures and unions.

6 Lint C Program Checker

The types of pointers used in assignment, conditional, relational, and initialization statements
must agree exactly. For example, the code:

int *P
char *q

p = q;

would cause lint to respond with the message

warning: illegal pointer combination

Adding and subtracting integers and pointers are legal. Any other binary operation on them
results in the message

warning: illegal combination of pOinter and integer: op <operator>

An example of code causing this message would be:

int s, *t;

t = s;

Assignments of long integer variables are possible in the C language. However, on some machines
the amount of storage supplied for the two types differs, and so the accuracy of a value could
be lost in the conversion. Lint detects these assignments as possible program bugs. If a long
integer is assigned to an integer, lint responds with:

warning: conversion from long may lose accuracy

Lint checks enumerations to see that variables or members are all of one type. Also, the only
enumeration operations it allows are are assignment, initialization, equality, and inequality. If lint
finds code breaking any of these guidelines, it sends the message:

warning: enumeration type clash. operator <operator>

Lint C Program Checker 7

Structure and union references are subject to more type checking by lint than by the C compiler.
Lint requires that the left operand of - > be a pointer to a structure or a union. If it isn't a
pointer, lint's response is:

warning: struct/union or struct/union pointer required

The left operand of . must be a structure or a union, which lint also indicates with the message
above. The right operand of - > and. must be a member of the structure or union implied by
the left operand. If it isn't, then lint's message is:

warning: illegal member use <name>

where <name> is the right operand.

Suppressing Lint
You may have a legitimate reason for converting a long integer to an integer. Lint's -a option
inhibits comments about these conversions.

Problem Code: Portability
The -p option of lint aids the programmer in writing portable code in five areas:

1. character comparisons;

2. pointer alignments;

3. uninitialized external variables;

4. length of external variables;

5. type casting.

Character representation varies on different machines. Characters may be implemented as
signed values. As a result, certain comparisons with characters give different results on different
machines. The expression

c<o

where c is defined as type character, is always true if characters are unsigned values. If, however,
characters are signed values, the expression could be either true or false. Where character
comparisons could result in different values depending on the machine used, lint outputs the
message:

warning: nonportable character comparison

8 Lint C Program Checker

Legal pointer assignments are determined by the alignment restrictions of the particular machine
used. For example, one machine may allow double-precision values to begin on any integer
boundary, but another may restrict them to word boundaries. If integer and word boundaries
are different, code containing an assignment of a double pointer to an integer pointer could cause
problems. Lint attempts to detect where the effect of pointer assignments is machine dependent.
The warning that it sends is:

warning: possible pOinter alignment problem

Another machine-dependent area is the treatment of uninitialized external variables. If two files
both contain the declaration

int a;

either one word of storage is allocated or each occurrence receives its own word of storage,
depending on the machine. If the files that lint is processing contain multiple definitions of the
same un initialized external variable, lint responds with:

warning: <name> redefinition hides earlier one

The amount of information about external symbols that is loaded depends on the machine being
used: the number of characters saved and whether or not uppercase/lowercase distinction is
kept. Lint truncates all external symbols to six characters and allows only one case distinction.
(It changes uppercase characters to lowercase.) This provides a worst-case analysis so that the
uniqueness of an external symbol is not machine-dependent.

The effectiveness of type casting in C programs can depend on the machine that is used. For
this reason, lint ignores type casting code. All assignments that use it are subject to lint's type
checking (see Problem Code: Type Matching).

Suppressing Lint
The -p option stops comments about two types of portability problems:

1. pointer alignment problems,

2. multiple definitions of external variables.

Lint's objections to legal casts can also be suppressed by using the -c option.

Lint C Program Checker 9

Problem Code: Strange Constructions
A strange construction is code that lint considers to be bad style or a possible bug.

Lint looks for code that has no effect. An example is:

where the • has no effect. The statement is equivalent to "p++; ". In cases like this, the message:

warning: null effect

is sent.

The treatment of unsigned numbers as signed numbers in comparison causes lint to report:

warning: degenerate unSigned comparison

The following code would produce such a message:

unsigned x;

if (x,O) ...

Lint also objects if constants are treated as variables. If the boolean expression in a conditional
has a set value due to constants, such as

if(1 !=O) ...

lint's response is:

warning: constant in conditional context

If the NOT operator is used on a constant value, the response is:

warning: constant argument to NOT

10 Lint C Program Checker

To avoid operator precedence confusion, lint encourages using parentheses in expressions by
sending the message:

warning: precedence confusion possible: parenthesize!

Lint judges it bad style to redefine an outer block variable in an inner block. Variables with
different functions should normally have different names. If variables are redefined, the message
sent is:

warning: <name> redefinition hides earlier one

Suppressing Lint
To stop lint's comments about strange constructions, use its -h option.

Lint C Program Checker 11

How to Use Lint
The lint command has the form:

lint [options] files ... library-descriptors

where options are optional flags to control lint checkng and messages, files are the files to be
checked which end with .c or .In, and library-descriptors are the names of libraries to be used
in checking the program.

The options that are currently supported by the lint command are:

-a

-b

-c

-h

-n

-0 name

-p

-u

-v

-x

Suppress messages about assignments of long values to variables that are not
long.

Suppress messages about break statements that cannot be reached.

Only check for intrafile bugs; leave external information in files suffixed with .In.

Do not apply heuristics (which attempt to detect bugs, improve style, and reduce
waste).

Do not check for compatibility with either the standard or the portable lint library.

Create a lint library from input files named llib-lname.ln.

Attempt to check portability to other dialects of C language.

Suppress messages about function and external variables used and not defined or
defined and not used.

Suppress messages about unused arguments and functions.

Do not report variables referred to by external declaractions but never used.

The names of files that contain C language programs should end with the suffix .c, which is
mandatory for lint and the C compiler.

The lint program accepts certain arguments, such as:

-ly

12 Lint C Program Checker

These arguments specify libraries that contain functions used in the C language program. The
source code is tested for compatibility with these libraries. This is done by accessing library
description files whose names are constructed from the library arguments. These files all begin
with the comment:

/*LINTLIBRARY*/

which is followed by a series of dummy function definitions. The critical parts of these definitions
are the declaration of the function return type, whether the dummy function returns a value, and
the number and types of arguments to the function. The VARARGS and ARGSUSED comments
can be used to specify features of the library functions.

The lint library files are processed almost exactly like ordinary source files. The only difference
is that functions which are defined on a library file but are not used on a source file do not result
in messages. The lint program does not simulate a full library search algorithm and will print
messages if the source files contain a redefinition of a library routine.

By default, lint checks the programs it is given against a standard library file which contains
descriptions of the programs which are normally loaded when a C language program is run.
When the -p option is used, another file is checked containing descriptions of the standard
library routines which are expected to be portable across various machines. The -0 option can
be used to suppress all library checking.

Lint C Program Checker 13

Directives
The alternative to using options to suppress lint's comments about problem areas is to use
directives. Directives appear in the source code in the form of code comments. Lint recognizes
five directives.

j*NOTREACHED* /

j*NOSTRICT* /

j* ARGSUSED* /

j*VARRARGSn* /

j*LINTLIBRARY* /

14 Lint C Program Checker

stops an unreachable code comment about the next line of
code.

stops lint from strictly type checking the next expression.

stops a comment about any unused parameters for the fol­
lowing function.

stops lint from reporting variable numbers of parameters
in calls to a function. The function's declaraction follows
this comment. The first n parameters must be present in
each call to the function; lint comments if they aren't. if
"j*VARARGS*j" appears without the n, none of the param­
eters need be present.

must be placed at the beginning of a file. This directive
tells lint that the file is a library file and to suppress com­
ments about the unused functions. Lint objects if other files
redefine routines that are found there.

Index

a
ARGSUSED .. 14

c
C function libraries ... 13
.c suffix required on files .. 12
code unreachable ... 5
command syntax, lint ... 12
compiler used to detect errors ... 1
constructions, strange ... 10

d
detecting errors with compiler ... 1
directives, lint .. 14

e
error detection ... 1
error limit .. 1
error messages, suppressing ... 3
external symbols ... 9
external variables and functions .. 4

f
filename suffix .c required ... 12
function libraries, C .. 13
function return value .. 5
functions, unused 3

.
I

infinite loop ... 5

Index 15

I
libraries, C function .. 13
library file processing by lint .. 13
limit, error .. 1
lint directives ... 14
lint, purpose of .. 2
LINTLIBRARY .. 14
loop not entered from top .. 5

m
member type consistency ... 7

n
NOSTRICT .. 14
NOTREACHED 14

o
operator precedence confusion .. 11

p
pointer alignment ... 9
portability .. 8
precedence confusion ... 11
problem detection .. 2
purpose of lint ... 2

r
redefining variables 11

5
strange constructions ... 10
s~ucture typerefurences ... 8
subtle errors .. 2
suppressing error messages ... 3
symbols, external ... 9
syntax, lint command ... 12

16 Index

t
type matching, neglected by compiler .. 6
types .. 7

u
undefined return value ... 6
uninitialized external variables .. 9
union type references .. 8
unreachable code ... 5
unsigned treated as signed ... 10
unused variables and functions ... 3
using compiler to detect errors ... 1
using values before they are set .. 4

v
value set but not used ... 4
value used but not yet set .. 4
variable type consistency ... 7
variables redefinition .. 11
variables, unused ... 3
VARRARGSn ... 14

Index 17

Table of Contents
Ratfor: A Preprocessor for a National FORTRAN

Introduction. .. 2
Language Description .. 3

Design .. 3
Statement Grouping. .. 4
The "else" Clause ... 5
Nested if's .. 6
If·else Ambiguity .. 8
The "switch" Statement. .. 9
The "do" Statement ... 9
"Break" and "next" .. 11
The "while" Statement .. 11
The "for" Statement .. 13
The "repeat·until" statement 15
More on break and next ... 16
The "return" Statement. .. 16
Cosmetics .. 17
Free-form Input .. 17
Translation Services. .. 18
The "define" Statement. .. 20
The "include" Statement. .. 21
Pitfalls, Botches, Blemishes and other Failings 21

Experience ... 22
Good Things .. 22
Bad Things .. 23

Conclusions .. 24
Usage on HP-UX .. 24

Ratfor: A Preprocessor
for a Rational FORTRAN
Although FORTRAN is not a pleasant language to use, its universality and relative efficiency
maintain its position in the computer market. The Ratfor language, by providing control flow
statements, attempts to conceal the main deficiencies of FORTRAN while retaining its desirable
qualities. The Ratfor preprocessor converts input code into FORTRAN output code. The
facilities provided include:

• Statement grouping

• If-else and switch for decision-making

• While, for, do, and repeat-until for looping

• Break and next for controlling loop exits

• Free-form input such as multiple statements/lines, and automatic continuation

• Simple comment convention

• Translation of >, >=, etc., into .gt., .ge., etc.

• Return function for functions

• Define statement for symbolic parameters

• Include statement for including source files.

Ratfor: A Preprocessor for a Rational FORTRAN 1

Introduction
Most programmers agree that FORTRAN is an unpleasant language to program in, yet there are
many occasions when they are forced to use it, especially when FORTRAN is the only language
thoroughly supported on the local computer, or the application requires intensive computation.

FORTRAN's worst deficiency is probably in control flow statements, conditional branches and
loops, that express the logic of program flow. For example, FORTRAN's primitive conditional
statements force the user into at least two statement numbers and two implied GOTOs to handle
a single arithmetic IF. This leads to unintelligible code that is eschewed by good programmers.

The Logical IF is better, in that the test part can be stated clearly, but hopelessly restrictive
because the statement that follows the IF can only be one FORTRAN statement (with some
further restrictions!).

The result of these failings is that FORTRAN programs must be written with numerous labels
and branches. The resulting code is particularly difficult to read and understand, and thus hard
to debug and modify.

When one is ·faced with an unpleasant language, a useful technique is to define a new language
that overcomes the deficiencies, and to translate it into the unpleasant one with a preprocessor.
This is the approach taken with Ratfor (The preprocessor idea is not new, and FORTRAN
preprocessors are widely used).

2 Ratfor: A Preprocessor for a Rational FORTRAN

Language Description

Design
Ratfor attempts to retain the merits of FORTRAN (universality, portability, efficiency) while hiding
the worst FORTRAN inadequacies. The language is FORTRAN except for two aspects. First,
since control flow is central to any program, regardless of the specific application, the primary
task of Ratfor is to conceal this part of FORTRAN from the user, by providing decent control
flow structures. These structures are sufficient and comfortable for structured programming
in the narrow sense of programming without GOTO's. Second, since the preprocessor must
examine an entire program to translate the control structure, it is possible at the same time to
clean up many of the "cosmetic" deficiencies of FORTRAN, and thus provide a language which
is easier and more pleasant to read and write.

Beyond these two aspects - control flow and cosmetics - Ratfor does nothing about the host of
other weaknesses of FORTRAN. Although it would be straightforward to extend it to provide
character strings, for example, they are not needed by everyone, and of course the preprocessor
would b~ harder to implement. Throughout, the design principle which has determined what
should be in Ratfor and what should not has been Ratfor doesn't know any FORTRAN. Any
language feature which would require that Ratfor really understand FORTRAN has been omitted.
We will return to this point in the section on implementation.

Even within the confines of control flow and cosmetics, we have attempted to be selective in what
features to proVide. The intent has been to provide a small set of the most useful constructs,
rather than to throw in everything that has ever been thought useful by someone.

The rest of this section contains an informal description of the Ratfor language. The control
flow aspects will be quite familiar to readers used to languages like Algol, PL/I, Pascal, etc.,
and the cosmetic changes are equally straightforward. We shall concentrate on showing what
the language looks like.

Ratfor: A Preprocessor for a Rational FORTRAN 3

Statement Grouping
FORTRAN provides the Block If statement to group statements together. However, the keyword
approach can be cumbersome. The standard construction "if a condition is true, do this group
of things," for example,

if (x > 100)
{ call error("x>100"); err

would be written in FORTRAN as

if (x .gt. 100) then

endif

call error("x > 100")
err = 1
return

1; return}

A group of statements can be treated as a unit by enclosing them in the braces { and }. This
is true throughout the language: wherever a single Ratfor statement can be used, there can be
several enclosed in braces. (Braces seem clearer and less obtrusive than begin and end or do
and end, and of course do and end already have FORTRAN meanings.)

Cosmetics contribute to the readability of code, and thus to its understandability. The character
">" is clearer than" .GT." , so Ratfor translates it appropriately, along with several other similar
shorthands.

Ratfor is a free-form language: statements may appear anywhere on a line, and several may
appear on one line if they are separated by semicolons. The example above could also be written
as

if (x > 100) {

}

call error("x>100")
err = 1
return

In this case, no semicolon is needed at the end of each line because Ratfor assumes there is one
statement per line unless told otherwise.

4 Ratfor: A Preprocessor for a Rational FORTRAN

Of course, if the statement that follows the if is a single statement (Ratfor or otherwise), no
braces are needed:

if (y <= 0.0 & z <= 0.0)
write(6, 20) y, z

No continuation need be indicated because the statement is clearly not finished on the first
line. In general Ratfor continues lines when it seems obvious that they are not yet done. (The
continuation convention is discussed in detail later.)

Although a free-form language permits wide latitude in formatting styles, it is wise to pick one
that is readable, then stick to it. In particular, proper indentation is vital, to make the logical
structure of the program obvious to the reader.

The "else" Clause
Ratfor provides an "else" statement to handle the construction "if a condition is true, do this
thing, otherwise do that thing."

if (a <= b)
{ sw = 0; write(6, 1) a, b }

else
{ sw = 1; write(6, 1) b, a }

This writes out the smaller of a and b, then the larger, and sets sw appropriately.

As before, if the statement following an if or an else is a single statement, no braces are needed:

if (a <= b)
sw 0

else
sw 1

Ratfor: A Preprocessor for a Rational FORTRAN 5

The syntax of the if statement is

if «legal FORTRAN condition»
Ratfor statement

else
Ratfor statement

where the else part is optional. The <legal FORTRAN condition> is anything that can legally go
into a FORTRAN Logical IF. Ratfor does not check this clause, since it does not know enough
FORTRAN to know what is permitted. The Ratfor statement is any Ratfor or FORTRAN
statement, or any collection of them in braces.

Nested if's
Since the statement that follows an if or an else can be any Ratfor statement, this leads imme­
diately to the possibility of another if or else. As a useful example, consider this problem:

The variable f is to be set to -1 if x is less than zero, to + 1 if x is greater than 100, and to a
otherwise. In Ratfor, we write

if (x < 0)
f = -1

else if (x > 100)
f +1

else
f 0

Here the statement after the first else is another if-else. Logically it is just a single statement,
although it is rather complicated.

This code says what it means. Any version written in straight Fortran will necessarily be indirect
because Fortran does not let you say what you mean. And as always, clever shortcuts may turn
out to be too clever to understand a year from now.

6 Ratfor: A Preprocessor for a Rational FORTRAN

Following an else with an if is one way to write a multi-way branch in Ratfor. In general the
structure

if (...)

else if (...)

else if (. ..)

else

provides a way to specify the choice of exactly one of several alternatives. (Ratfor also provides
a switch statement which does the same job in certain special cases; in more general situations,
we have to make do with spare parts.) The tests are laid out in sequence, and each one is
followed by the code associated with it. Read down the list of decisions until one is found that
is satisfied. The code associated with this condition is executed, and then the entire structure
is finished. The trailing else part handles the "default" case, where none of the other conditions
apply. If there is no default action, this final else part is omitted:

if (x < 0)
x = 0

else if (x > 100)
x = 100

Rador: A Preprocessor for a Rational FORTRAN 7

If-else Ambiguity
There is one thing to notice about complicated structures involving nested ifs and elses. Consider

if (x > 0)
if (y > 0)

write(6, 1) x, y
else

write(6, 2) y

There are two ifs and only one else. Which if does the else go with?

This is a genuine ambiguity in Ratfor, as it is in many other programming languages. The
ambiguity is resolved in Ratfor (as elsewhere) by saying that in such cases the else goes with
the closest previous un-elseed if. Thus in this case, the else goes with the inner if, as we have
indicated by the indentation.

It is a wise practice to resolve such cases by explicit braces, just to make your intent clear. In
the case above, we would write

if (x > 0) {
if (y > 0)

write(6, 1) x, y
else

write(6, 2) y
}

which does not change the meaning, but leaves no doubt in the reader's mind. If we want the
other association, we must write

if (x > 0) {
if .(y > 0)

write(6, 1) x, y
}

else
write(6. 2) y

8 Ratfor: A Preprocessor for a Rational FORTRAN

The "switch" Statement
The switch statement provides a clean way to express multi-way branches which branch on the
value of some integer-valued expression. The syntax is

}

swi tch «expression» {
case <exprl>:

statements
case <expr2> , <expr>

statements

default:
statements

Each case is followed by a list of comma-separated integer expressions. The <expression>
inside switch is compared against the case expressions <exprl>, <expr2>, and so on in turn
until one matches, at which time the statements following that case are executed. If no cases
match <expression>, and there is a default section, the statements with it are done; if there is
no default, nothing is done. In all situations, as soon as some block of statements is executed,
the entire switch is exited immediately. (Readers familiar with C should beware that this behavior
is not the same as the C sWitch.)

The "do" Statement
The do statement in Ratfor is quite similar to the DO statement in FORTRAN, except that it uses
no statement number. The statement number, after all, serves only to mark the end of the DO,

and this can be done just as easily with braces. Thus

do i = 1, n {
xCi) 0.0
y(i) 0.0
z(i) 0.0

}

is the same as

do 10 i = 1, n
xCi) 0.0
y(i) 0.0
z(i) 0.0

10 continue

Ratfor: A Preprocessor for a Rational FORTRAN 9

The syntax is:

do <legal FORTRAN text>
Ratfor statement

The part that follows the keyword do has to be something that can legally go into a FORTRAN
DO statement. Thus if a local version of FORTRAN allows DO limits to be expressions (which is
not currently permitted in ANSI FORTRAN), they can be used in a Ratfor do.

The Ratfor statement part will often be enclosed in braces, but as with the if, a single statement
need not have braces around it. This code sets an array to zero:

do i = 1. n
x(i) = 0.0

Slightly more complicated,

do i = 1. n
do j = 1. n

m(i. j) = 0

sets the entire array m to zero, and

do i = 1. n
do j = 1. n

if (i < j)
m(i. j) -1

else if (i == j)
m(i. j) 0

else
m(i. j) +1

sets the upper triangle of m to -1, the diagonal to zero, and the lower triangle to + 1. (The
operator == is "equals"; that is, ".EQ.".) In each case, the statement that follows the do is
logically a single statement, even though complicated, and thus needs no braces.

10 Ratfor: A Preprocessor for a Rational FORTRAN

"Break" and "next"
Ratfor provides a statement for leaving a loop early, and one for beginning the next iteration.
Break causes an immediate exit from the do; in effect it is a branch to the statement after the
do. Next is a branch to the bottom of the loop, so it causes the next iteration to be done. For
example, this code skips over negative values in an array:

do i = 1. n {
if (x(i) < 0.0)

next
<process positive element>

}

Break and next also work in the other Ratfor looping constructions discussed in the next few
sections.

Break and next can be followed by an integer to indicate breaking or iterating that level of
enclosing loop; thus

break 2

exits from two levels of enclosing loops, and Break 1 is equivalent to break. next 2 iterates
the second enclosing loop. (Realistically, multi-level breaks and nexts are not likely to be much
used because they lead to code that is hard to understand and somewhat risky to change.)

The "while" Statement
A serious problem with the DO statement is that it encourages that a program be written in terms
of an arithmetic progression with small positive steps, even though that may not be the best way
to write it. If code has to be contorted to fit the requirements imposed by the FORTRAN DO,

it is that much harder to write and understand.

Ratfor: A Preprocessor for a Rational FORTRAN 11

To overcome these difficulties, Ratfor provides a while statement, which is simply a loop: "while
some condition is true, repeat this group of statements". It has no preconceptions about why
one is looping. For example, this routine to compute sin(x) by the Maclaurin series combines
two termination criteria.

real function sin (x. e)
returns sin(x) to accuracy e. by
sin(x) = x - x**3/3! + x**5/5! -
sin = x
term = x
i = 3
while (abs(term»e & i<100) {

}

term = -term * x**2 / float(i*(i-l»
sin = sin + term
i = i + 2

return
end

Notice that if the routine is entered with term already smaller than e, the loop will be done
zero times, that is, no attempt will be made to compute x**3 and thus a potential underflow is
avoided. Since the test is made at the top of a while loop instead of the bottom, a special case
disappears: the code works at one of its boundaries. (The test i< 1 00 is the other boundary,
making sure the routine stops after some maximum number of iterations.)

As an aside, a sharp character "#" in a line marks the beginning of a comment; the rest of the
line is comment. Comments and code can co-exist on the same line - one can make marginal
remarks, which is not possible with FORTRAN's "C in column 1" convention. Blank lines are
also permitted anywhere; they should be used to emphasize the natural divisions of a program.

The syntax of the while statement is

while (legal FORTRAN condition)
Ratfor statement

As with the if, (legal FORTRAN condition) is something that can go into a FORTRAN Logical
IF, and Ratfor statement is a single statement, which may be multiple statements in braces.

12 Ratfor: A Preprocessor for a Rational FORTRAN

The while encourages a style of coding not normally practiced by FORTRAN programmers. For
example, suppose nextch is a function which returns the next input character both as a function
value and in its argument. Then a loop to find the first non-blank character is just

while (nextch(ich) == iblank)

A semicolon by itself is a null statement, which is necessary here to mark the end of the while;
if it were not present, the while would control the next statement. When the loop is broken,
ich contains the first non-blank. Of course the same code can be written in FORTRAN as

100 if (nextch(ich) .eq. iblank) goto 100

but many FORTRAN programmers (and a few compilers) believe this line is illegal. The language
at one's disposal strongly influences how one thinks about a problem.

The "for" Statement
The for statement is another Ratfor loop, which attempts to carry the separation of loop­
body from reason-for-Iooping a step further than the while. A for statement allows explicit
initialization and increment steps as part of the statement. For example, a DO loop is just

for (i = 1; i <= n; i = i + 1) ...

This is equivalent to

i = 1
while (i <= n) {

i = i + 1
}

The initialization and increment of i have been moved into the for statement, making it easier to
see at a glance what controls the loop.

The for and while versions have the advantage that they will be done zero times if n is less than
1.

Ratfor: A Preprocessor for a Rational FORTRAN 13

The loop of the sine routine in the previous section can be rewritten with a for as

for (i=3; abs(term) > e & i < 100; i=i+2) {
term = -term * x**2 / float(i*(i-l»
sin = sin + term

}

The syntax of the for statement is

for «init>; <condition>; <increment»
Ratfor statement

<init> is any single FORTRAN statement that is executed once before the loop begins.

<increment> is any single FORTRAN statement, that gets done at the end of each pass through
the loop, before the test.

<condition> is, again, anything that is legal in a logical IF.

Any of <init>, <condition>, and <increment> can be omitted, although the semicolons must
always be present. A non-existent <condition> is treated as always true, so for(;;) is an indefinite
repeat (but see the repeat-until in the next section).

The for statement is particularly useful for backward loops, chaining along lists, loops that might
be done zero times, and similar things which are hard to express with a DO statement, and
obscure to write out with IFs and GOTOs. For example, here is a backwards DO loop to find the
last non-blank character on a card:

for (i = 80; i > 0; i = i - 1)
if (card(i) != blank)

break

(! = is the same as . NE.). The code scans the columns from 80 through to 1. If a non-blank is
found, the loop is immediately broken break and next work in fors and whiles just as in dos}. If
i reaches zero, the card is all blank.

This code is rather nasty to write with ANSI FORTRAN DO, since proper conditions must
explicitly set up when we fall out of the loop (forgetting this is a common error). Thus:

DO 10 I = 80, 1, -1
IF (CARD(I) .NE. BLANK) GO TO 11

10 CONTINUE
I = 0

11

14 Ratfor: A Preprocessor for a Rational FORTRAN

The version that uses the for handles the termination condition properly for free; i is zero when
we fall out of the for loop.

The increment in a for need not be an arithmetic progression; the following program walks along
a list (stored in an integer array ptr) until a zero pointer is found, adding up elements from a
parallel array of values:

sum = 0.0
for (i = first; i > 0; i = ptr(i))

sum = sum + value(i)

Notice that the code works correctly if the list is empty. Again, placing the test at the top of a
loop instead of the bottom eliminates a potential boundary error.

The "repeat-until" statement
In spite of the dire warnings, there are times when one really needs a loop that tests at the
bottom after one pass through. This service is provided by the repeat-until:

repeat
Ratfor statement

until (legal FORTRAN condition)

The Ratfor statement part is done once, then the condition is evaluated.

- If it is true, the loop is exited.
- If it is false, another pass is made.

The until part is optional, so a bare repeat is the cleanest way to specify an infinite loop.

Of course such a loop must ultimately be broken by some transfer of control such as stop, return,

or break, or an implicit stop such as running out of input with a READ statement.

It is a matter of observed fact that the repeat-until statement is much less used than the other
looping constructions; in particular, it is typically outnumbered ten to one by for and while. Be
cautious about using it, for loops that test only at the bottom often don't handle null cases well.

Ratfor: A Preprocessor for a Rational FORTRAN 15

More on break and next

Break exits immediately from do, while, for, and repeat-until. Next goes to the test part of do,
while and repeat-until, and to the increment step of a for.

The "return" Statement
The standard FORTRAN mechanism for returning a value from a function uses the name of the
function as a variable. The variable is assigned by the program, and the last value stored in it
is the function value upon return. For example, here is a routine equal which returns 1 if two
arrays are identical, and zero if they differ. The array ends are marked by the special value -1.

equal - compare str1 to str2;

return 1 if equal, 0 if not

integer function equal (str1, str2)
integer str1(100) , str2(100)
integer i
for (i = 1; str1(i) == str2(i); i i + 1)

if (str1(i) == -1) {
equal = 1
return

}

equal = 0
return
end

In many languages (e.g., PLjI) one instead says

return (<expression>)

to return a value from a function. Since this is often clearer, Ratfor provides such a return
statement. In a function I, return (expression) is equivalent to

{ F = <expression>; <return> }

16 Ratfor: A Preprocessor for a Rational FORTRAN

For example, here is equal again:

equal _ compare str1 to str2;

return 1 if equal, 0 if not

integer function equal (str1, str2)
integer str1(100) , str2(100)
integer i
for (i = 1; str1(i) == str2(i); i i + 1)

if (str1(i) == -1)
return(1)

return (0)
end

If there is no parenthesized expression after return, a normal RETURN is made. (Another version
of equal is presented shortly.)

Cosmetics
As previously stated, the visual appearance of a language has a substantial effect on how easy it
is to read and understand programs. Accordingly, Ratfor provides a number of cosmetic facilities
which may be used to make programs more readable.

Free-form Input
Statements can be placed anywhere on a line. Long statements are continued automatically, as
are long conditions in if, while, for, and until. Blank lines are ignored. Multiple statements may
appear on one line if they are separated by semicolons. No semicolon is needed at the end of a
line if Ratfor can make some reasonable guess about whether the statement ends there. Lines
ending with any of the characters

+ * &

are assumed to be continued on the next line. Underscores are discarded wherever they occur;
all others remain as part of the statement.

Ratfor: A Preprocessor for a Rational FORTRAN 17

Any statement that begins with an all-numeric field is assumed to be a FORTRAN label, and
placed in columns 1-5 upon output. Thus

write(6, 100); 100 format("hello")

is converted into

write (6, 100)
100 format(5hhello)

Translation Services
Text enclosed in matching single or double quotes is converted to nH. .. but is otherwise
unaltered (except for formatting - it may get split across card boundaries during the reformatting
process). Within quoted strings, the backslash (\) serves as an escape character: the next
character is taken literally. This provides a way to get quotes (and of course the backslash itself)
into quoted strings:

"\\\'"

is a string containing a backslash and an apostrophe. (This is not the standard convention of
doubled quotes, but it is easier to use and more general.)

Any line that begins with the character (%) is left absolutely unaltered except for stripping off
the (%) and moving the line one position to the left. This is useful for inserting control cards,
and other things that should not be transmogrified (like an existing FORTRAN program). Use
(%) only for ordinary statements; not for the condition parts of if, while, etc.; or the output may
be positioned incorrectly.

18 Ratfor: A Preprocessor for a Rational FORTRAN

The following character translations are made, except within single or double quotes or on a line
beginning with a percent sign (%).

Input Translated output

.eq.

!= .ne .

> . gt.

>= .ge .

< .It.

<= .Ie.

& .and.

.or.

.not .

. not.

In addition, the following translations are provided for input devices with restricted character
sets.

$(

$)

{

}

{

}

Ratfor: A Preprocessor for a Rational FORTRAN 19

The "define" Statement
Any string of alphanumeric characters can be defined as a name; thereafter, whenever that name
occurs in the input (delimited by non-alphanumerics) it is replaced by the rest of the definition
line. (Comments and trailing white spaces are stripped off). A defined name can be arbitrarily
long, and must begin with a letter.

Define is typically used to create symbolic parameters:

define ROWS 100
define COLS 50
dimension a (ROWS) , b(ROWS, COLS)

if (i > ROWS I j > COLS)

Alternately, definitions can be written as

define (ROWS , 100)

In this case, the defining text is everything after the comma up to the balancing right parenthesis;
this allows multi-line definitions.

It is generally a wise practice to use symbolic parameters for most constants, to help make clear
the function of what would otherwise be mysterious numbers. As an example, here is the routine
equal again, this time with symbolic constants.

define YES 1
define NO a
define EOS -1
define ARB 100
equal - compare str1 to str2;

return YES if equal, NO if not

integer function equal (str1, str2)
integer str1(ARB) , str2(ARB)
integer i
for (i = 1; str1(i) == str2(i); i i + 1)

if (str1(i) == EOS)
return (YES)

return(NO)
end

20 Ratfor: A Preprocessor for a Rational FORTRAN

The "include" Statement
The statement

include file

inserts the file found on input stream file into the Ratfor input in place of the include statement.
The standard usage is to place COMMON blocks on a file, and include that file whenever a copy is
needed:

subroutine x
include commonblocks

end
subroutine y

include commonblocks

end

This ensures that all copies of the COMMON blocks are identical

Pitfalls, Botches, Blemishes and other Failings
Hatfor catches certain syntax errors, such as missing braces, else clauses without an if, and
most errors involving missing parentheses in statements. Beyond that, since Ratfor knows no
FORTRAN, any errors you make will be reported by the FORTRAN compiler, so you will from
time to time have to relate a FORTRAN diagnostic back to the Ratfor source.

Keywords are reserved. Using if, else, etc., as variable names will typically wreak havoc.

Don't leave spaces in keywords. Don't use the Arithmetic IF.

The FORTRAN nH convention is not recognized anywhere by Ratfor; use quotes instead.

Ratfor: A Preprocessor for a Rational FORTRAN 21

Experience

Good Things
"It's so much better than FORTRAN" is the most common response of users when asked how
well Ratfor meets their needs. Although cynics might consider this to be vacuous, it does seem
to be true that decent control flow and cosmetics converts FORTRAN from a bad language into
quite a reasonable one, assuming that FORTRAN data structures are adequate for the task at
hand.

Although there are no quantitative results, users feel that coding in Ratfor is at least twice as
fast as in FORTRAN. More important, debugging and subsequent revision are much faster than
in FORTRAN. Partly this is simply because the code can be read. The looping statements which
test at the top instead of the bottom seem to eliminate or at least reduce the occurrence of a
wide class of boundary errors. And of course it is easy to do structured programming in Ratfor;
this self-discipline also contributes markedly to reliability.

One interesting and encouraging fact is that programs written in Ratfor tend to be as readable as
programs written in more modern languages like Pascal. Once one is freed from the shackles of
FORTRAN's clerical detail and rigid input format, it is easy to write code that is readable, even
esthetically pleasing. For example, here is a Ratfor implementation of a linear table search:

A(m+1) x
for (i = 1; A(i) != x; i = i + 1)

if (i > m) {

m = i
B(i) 1

}

else
B(i) B(i) + 1

22 Ratfor: A Preprocessor for a Rational FORTRAN

Bad Things
The biggest single problem is that many FORTRAN syntax errors are not detected by Ratfor but
by the local FORTRAN compiler. The compiler then prints a message in terms of the generated
FORTRAN, and in a few cases this may be difficult to relate back to the offending Ratfor line,
especially if the implementation conceals the generated FORTRAN. This problem could be dealt
with by tagging each generated line with some indication of the source line that created it, but
this is inherently implementation-dependent, so no action has yet been taken. Error message
interpretation is actually not so arduous as might be thought. Since Ratfor generates no variables,
only a simple pattern of IFs and GOTOs, data-related errors like missing DIMENSION statements are
easy to find in the FORTRAN. Furthermore, there has been a steady improvement in Ratfor's
ability to catch trivial syntactic errors like unbalanced parentheses and quotes.

There are a number of implementation weaknesses that are a nuisance, especially to new users.
For example, keywords are reserved. This rarely makes any difference, except for those hardy
souls who want to use an Arithmetic IF. A few standard FORTRAN constructions are not
accepted by Ratfor, and this is perceived as a problem by users with a large corpus of existing
FORTRAN programs. Protecting every line with a (%) is not really a complete solution, although
it serves as a stop-gap. The best long-term solution is provided by the program struct, which
converts arbitrary FORTRAN programs into Ratfor.

Users who export programs often complain that the generated FORTRAN is "unreadable" be­
cause it is not tastefully formatted and contains extraneous CONTINUE statements. To some
extent this can be ameliorated (Ratfor now has an option to copy Ratfor comments into the
generated FORTRAN), but it has always seemed that effort is better spent on the input language
than on the output esthetics.

One final problem is partly attributable to success; since Ratfor is relatively easy to modify, there
are now several dialects of Ratfor. Fortunately, so far most of the differences are in character
set, or in invisible aspects like code generation.

Ratfor: A Preprocessor for a Rational FORTRAN 23

Conclusions
Ratfor demonstrates that with modest effort it is possible to convert FORTRAN from a bad
language into quite a good one. A preprocessor is clearly a useful way to extend or ameliorate
the facilities of a base language.

When designing a language, it is important to concentrate on the essential requirement of
providing the user with the best language possible for a given effort. One must avoid throwing
in "features"; things which the user may trivially construct within the existing framework.

One must also avoid getting sidetracked on irrelevancies. For instance it seems pointless for
Ratfor to prepare a neatly formatted listing of either its input or its output. The user is presumably
capable of the self-discipline required to prepare neat input that reflects his thoughts. It is much
more important that the language provide free-form input so he can format it neatly. No one
should read the output anyway except in the most dire circumstances.

Usage on HP-UX
The program ratfor is the basic translator; it takes either a list of file names or the standard
input and writes FORTRAN on the standard output. Options include -6x, which uses x as a
continuation character in column 6 (HP-UX uses & in column 1), and -C, which causes Ratfor
comments to be copied into the generated FORTRAN.

24 Ratfor: A Preprocessor for a Rational FORTRAN

Index

b
backward loops ... 14
braces ... 4, 8
branching, multi-way 7, 9
break (exit from do) .. 11
break (exit from do, while, for, and repeat-until) 16

c
case statement used with switch statement, example 9
chaining-along lists ... 14
character translations ... 19
comment lines .. 12
common blocks on a file 21
continue line on next line .. 17
control-flow ... 3
copies of common blocks .. 21
cosmetics .. 17

define statement
do, exit from
do statement

d
... 20

11
9, 10

e
else clause
exit from do

.. 5
11

f
for statement .. 13-15
free-form input .. 17

Index 25

9
grouping statements ... 4

h
HP-UX usage ... 24

i
if ... 2,5
if-else ambiguity .. 8
if-else structure .. 5
ifs, nested .. 6
include files .. 21
infinite loop .. 15

I
limitations ... 21
line continued on next line ... 17
logical IF ... 2
loop, infinite 15
loops executed zero times ... 14

m
multi-level break or next ... 11
multi-way branching ... 7, 9
multiple statements on a line .. 4

n
nested ifs ... 6
next (branch to bottom of do or other loop) 11
numeric field at beginning of statement 18

r
ratfor on HP-UX .. 24
repeat-until statement ... 15
return statement .. 16
return value from a function .. 16

26 Index

5
statement grouping .. 4
string comparer example program. .. 16, 17, 20
switch statement ... 7, 9
symbolic constants, used to clarify functions 20

t
text translation .. 18
translation of text characters 18

u
underflow prevention .. 12, 13
underscores discarded .. 1 7
until statement .. 15

v
visual appearance 17

w
weaknesses ... 3
while statement .. 11-13

Index 27

Table of Contents
The M4 Macro· Processor

General. .. 1
Usage .. 4
Defining Macros. .. 4
Arguments .. 8
Arithmetic Functions. .. 9
File Manipulation. .. 10
System Command .. 11
Conditionals .. 11
String Manipulation .. 12
Printing .. 13

The M4 Macro Processor

General
The m4 macro processor is a front end for rational FORTRAN (Ratfor) and the C programming
languages. The "#define" statement in C language and the analogous "define" in Ratfor are
examples of the basic facility provided by any macro processor.

At the beginning of a program, a symbolic name or symbolic constant can be defined as a
particular string of characters. The compiler will then replace later unquoted occurrences of the
symbolic name with the corresponding string. Besides the straightforward replacement of one
string of text by another, the m4 macro processor provides the following features:

• arguments

• arithmetic capabilities

• file manipulation

• conditional macro expansion

• string and substring functions.

The basic operation of m4 is to read every alphanumeric token (string of letters and digits) input
and determine if the token is the name of a macro. The name of the macro is replaced by its
defining text, and the resulting string is pushed back onto the input to be re-scanned. Macros
may be called with arguments. The arguments are collected and substituted into the right places
in the defining text before the defining text is re-scanned.

The user also has the capability to define new macros. Built-ins and user-defined macros work
exactly the same way except that some of the built-in macros have side effects on the state of
the process. A list of 32 built-in macros provided by the m4 macro processor can be found in
Table 1.

The M4 Macro Processor 1

Table 1. Built-in Macros

Macro Name Function

changequote Restores original characters or sets new quote characters.

changecom Changes left and right comment markers from the default # and new line.

decr Returns the value of its argument decremented by 1.

define Defines new macros.

defn Returns the quoted definition of its argument(s}.

divert Diverts output to 1-out-of-10 diversions.

divnum Returns the number of the currently active diversion.

dnl Reads and discards characters up to and including the next new line.

dumpdef Dumps the current names and definitions of items named as arguments.

errprint Prints its arguments on the standard error file.

eval Prints arbitrary arithmetic on integers.

ifdef Determines if a macro is currently defined.

ifelse Performs arbitrary conditional testing.

include Returns the contents of the file named in the argument. A fatal error occurs if the
file name cannot be accessed.

incr Returns the value of its argument incremented by 1.

index Returns the position where the second argument begins in the first argument.

2 The M4 Macro Processor

Table 1. (Continued)

Macro Name Function

len Returns the number of characters that makes its argument.

m4exit Causes immediate exit from m4.

m4wrap Pushes the exit code back at final EOF.

maketemp Facilitates making unique file names.

popdef Removes current definition of its argument(s) exposing any previous definitions.

pushdef Defines new macros but saves any previous definition.

shift Returns all arguments of shift except the first argument.

sinclude Returns the contents of the file named in the arguments. The macro remains silent
and continues if the file is inaccessible.

substr Produces substrings of strings.

syscmd Executes the HP-UX System command given in the first argument.

sysval Is the return code from the last call to syscmd.

traceoff Turns macro trace off.

traceon Turns the macro trace on.

translit Performs character transliteration.

undefine Removes user-defined or built-in macro definitions.

undivert Discards the diverted text.

The M4 Macro Processor 3

Usage
To use the m4 macro processor, input the following command:

m4 [optional files]

Each argument file is processed in order. If there are no arguments or if an argument is "-", the
standard input is read at that point. The processed text is written on the standard output which
may be captured for subsequent processing with the following command:

m4 [files] > outputfile

Defining Macros
The primary built-in function of m4 is define. Define is used to define new macros. The
following input:

define (name,stuff)

causes the string name to. be defined as stuff. All subsequent occurrences of name will be
replaced by stuff. Name must be alphanumeric and must begin with a letter (the underscore
counts as a letter). Stuff is any text that contains balanced parentheses. Stuff may stretch over
multiple lines. Thus, as a typical example:

define(N. 100)

i:f (i > N)

defines N to be 100 and uses the symbolic constant N in a later if statement.

The left parenthesis must immediately follow the word define to signal that define has arguments.
If a user-defined macro or function name is not followed immediately by "(", it is assumed to
have no arguments. Macro calls have the following general form:

name (argl ,arg2, ... argn)

4 The M4 Macro Processor

A macro name is only recognized as such if it appears surrounded by non-alphanumerics. Using
the following example:

define(N. 100)

if (NNN > 100)

the variable NNN is absolutely unrelated to the defined macro N, even though the variable
contains a lot of Ns.

Macros may be defined in terms of other names. For example:

define(N. 100)
define(M. N)

defines both M and N to be 100. If N is redefined and subsequently changes, M retains the
value of 100, not N.

The m4 macro processor expands macro names into their defining text as soon as possible. The
string N is immediately replaced by 100. Then the string M is also immediately replaced by
100. The overall result is the same as using the following input in the first place:

define(M. 100)

The order of the definitions can be interchanged as follows:

define(M. N)
define(N. 100)

Now M is defined to be the string N, so when the value of M is requested later, the result is the
value of N at that time (because the M will be replaced by N, which will be replaced by 100).

The more general solution is to delay the expansion of the arguments of define by quoting them.
Any text surrounded by left and right single quotes is not expanded immediately but has the
quotes stripped off.

NOTE

The direction of the single quote marks is important. The left (opening)
quote is different from the right (closing) quote. See changequote if this
is a problem on your terminal.

The M4 Macro Processor 5

The value of a quoted string is the string stripped of the quotes. If the input is:

define (N. 100)
define(M. 'N')

the quotes around the N are stripped off as the argument is being collected. The result of using
quotes is to define M as the string N, not 100. The general rule is that m4 always strips off one
level of single quotes whenever it evaluates something. This is true even outside of macros. If
the word define is to appear in the output, the word must be quoted in the input as follows:

'define' = 1

Another example of using quotes is redefining N . To redefine N, the evaluation must be delayed
by quoting:

define(N. 100)

define('N'. 200)

In m4, it is often wise to quote the first argument of a macro. The following example will not
redefine N:

define(N. 100)

define(N. 200)

The N in the second definition is replaced by 100. The result is equivalent to the following
statement:

define(100.200)

This statement causes an error since only things that look like names can be defined.

If left and right single quotes are not convenient for some reason, the quote characters can be
changed using the changequote function. The following example substitutes the opening and
closing square brackets for the opening and closing single quote characters:

changequote([.])

The original characters can be restored by using changequote without arguments as follows:

changequote

6 The M4 Macro Processor

There are two additional built-ins related to define. The undefine macro removes the definition
of some macro or function as follows:

undefine (' N')

The macro removes the definition of N. Built-ins can be removed with undefine, as follows:

undefine('define')

But once removed, the definition cannot be re-used.

The function ifdef provides a way to determine if a macro is currently defined. Depending on
the system, a definition appropriate for the particular machine can be made as follows:

ifdef('S310'. 'define(wordsize.16) ')
ifdef('S550'. 'define(wordsize.32) ')

Remember to use the quotes.

The ifdef macro actually permits three arguments. If the first argument is defined, the value of
ifdef is the second argument. If the first argument is not defined, the value of ifdef is the third
argument. If there is no third argument, the value of ifdef is null. Example:

ifdef('hpux'. on HPUX. not on HPUX)

The M4 Macro Processor 7

Arguments
So far, the simplest form of macro processing has been discussed, which is replacing one string
by another (fixed) string. User-defined macros may also have arguments, so different invocations
can have different results. Within the replacement text for a macro (the second argument of its
define), any occurrence of $n is replaced by the nth argument when the macro is actually used.
Thus, the macro bump defined as:

define(bump. $1 = $1 + 1)

generates code to increment its argument by 1. The 'bump(x)' statement is equivalent to 'x =

x + 1'.

A macro can have as many arguments as needed, but only the first nine are accessible ($1
through $9). The macro name is $0, although that is less commonly used. Arguments that are
not supplied are replaced by null strings, so a macro can be defined which simply concatenates
its arguments like this:

define(cat. $1$2$3$4$5$6$7$8$9)

Thus, 'cat(x, y, z)' is equivalent to 'xyz.' Arguments $4 through $9 are null since no correspond­
ing arguments were provided. Leading unquoted blanks, tabs, or newlines that occur during
argument collection are discarded. All other white space is retained. Thus:

define(a. b c)

defines 'a' to be 'b c'.

Arguments are separated by commas; however, when commas are within parentheses, the
argument is not terminated nor separated. For example:

define(a. (b. c))

has only two arguments. The first argument is a. The second is literally (b,c). A bare comma
or parenthesis can be inserted by quoting it.

8 The M4 Macro Processor

Arithmetic Functions
M4 provides three built-in functions for doing arithmetic on integers (only). The simplest is incr,
which increments its numeric argument by 1. The function deer decrements by 1. Thus, to
handle the common programming situation where a variable is to be defined as "one more than
N," use the following:

define(N. 100)
define(N1. 'incr(N)')

Then N1 is defined as one more than the current value of N.

The more general mechanism for arithmetic is a function called eval, which is capable of arbitrary
arithmetic on integers. The operators in decreasing order of precedence are:

Precedent Operator

Higher unary + and -

** (exponentiation)

* / % (modulus)

+-

==!= < <= > >=

! - (logical not and bitwise not)

& (bitwise and)

A (bitwise or and exclusive or)

&& (logical and)

Lower II (logical or)

Parentheses may be used to group operations where needed. All the operands of an expression
given to eval must ultimately be numeric. The numeric value of a true relation (like 1>0) is 1
and false is O. The precision in eval is 32 bits under the HP-UX operating system.

As a simple example, define M to be "2==N+ 1" using eval as follows:

define(N. 3)
define(M. 'eval(2==N+1)')

The defining text for a macro should be quoted unless the text is very simple. Quoting the
defining text usually gives the desired result and is a good habit to get into.

The M4 Macro Processor 9

File Manipulation
A new file can be included in the input at any time by the bUilt-in function include. For example:

include (filename)

inserts the contents of filename in place of the include command. The contents of the file is
often a set of definitions. The value of include (include's replacement text) is the contents of
the file. If needed, the contents can be captured in definitions, etc.

A fatal error occurs if the file named in include cannot be accessed. To get some control over
this situation, the alternate form sinclude can be used. The function sinclude (silent include)
says nothing and continues if the file named cannot be accessed.

The output of m4 can be diverted to temporary files during processing, and the collected material
can be output upon command. M4 maintains nine of these diversions, numbers 1 through 9. If
the built-in macro:

divert(n)

is used, all subsequent output is put onto the end of a temporary file referred to as n. Diverting
to this file is stopped by the divert or divert(O) command, which resumes the normal output
process.

Diverted text is normally output all at once at the end of processing with the diversions output
in numerical order. Diversions can be brought back at any time by appending the new diversion
to the current diversion. Output diverted to a stream other than 0 through 9 is discarded.
The function undivert brings back all diversions in numerical order. The function undivert with
arguments brings back the selected diversions in the order given. If the current diversion is not
o through 9, the act of undiverting will discard text in the specified stream(s).

The value of undivert is not the diverted text. Furthermore·, the diverted material is not re­
scanned for macros. The function divnum returns the number of the currently active diversion.
The current output stream is zero during normal processing.

10 The M4 Macro Processor

System Command
Any program in the local operating system can be run by using the syscmd function. For
example:

syscmd(date)

on the HP-UX system runs the date command. Normally, syscmd would be used to create a
file for a subsequent include. To facilitate making unique file names, the function maketemp
is provided with specifications identical to the system function mktemp. The maketemp macro
replaces the string xxxxxx (6 X's) anywhere in the argument with the process ID of the current
process.

Conditionals
Arbitrary conditional testing is performed via the ifelse function. In the simplest form:

if~lse(a, b, c, d)

compares the two strings a and b. If a and b are identical, ifelse returns the string c. Otherwise,
string d is returned. Thus, a macro called compare can be defined as one which compares two
strings and returns "yes" or "no" if they are the same or different as follows:

define (compare , 'ifelse($l, $2, yes, no)')

Note the quotes, which prevents evaluation of ifelse from occurring too early. If the fourth
argument is missing, it is treated as empty.

The function ifelse can actually have any number of arguments and provides a limited form of
multi-way decision capability. In the input:

ifelse(a, b, c, d, e, f, g)

if the string a matches the string b, the result is c. Otherwise, if d is the same as e, the result
is f. Otherwise, the result is g. If the final argument is omitted, the result is null, so:

ifelse(a, b, c)

is c if a matches b, and null otherwise.

The M4 Macro Processor 11

String Manipulation
The len function returns the length of the string (number of characters) that makes up its
argument. Thus:

len (abcdef)

is 6, and len((a,b)) is 5.

The function substr can be used to produce substrings of strings. Using input,
substr(s, i, n) returns the substring of 5 that starts as the ith position (origin zero) and is n
characters long. If n is omitted, the rest of the string is returned. The call:

substr('now is the time' ,1)

returns the following string:

ow is the time

If i or n is out of range, various actions occur.

The function index(sl, s2) returns the index (position) in 51 where the string 52 occurs or -1 if
it does not occur. As with substr, the origin for strings is O.

The function translit performs character transliteration and has the general form:

translit(s, f, t)

which modifies 5 by replacing any character found in f by the corresponding character of t. Using
input:

translit(s, aeiou, 12345)

replaces the vowels by the corresponding digits. If t is shorter than f, characters that do not
have an entry in t are deleted. As a limiting case, if t is not present at all, characters from fare
deleted from 5. So:

translit(s, aeiou)

would delete vowels from 5.

12 The M4 Macro Processor

There is also a function called dol that deletes all characters that follow it up to and including
the next new line. The dol macro is useful mainly for throwing away empty lines that otherwise
tend to clutter up m4 output. Using input:

define(N. 100)
define(M. 200)
define(L. 300)

results in a new line at the en,d of each line that is not part of the definition. So the new line is
copied into the output where it may not be wanted. If the function dol is added to each of these
lines, the newlines will disappear. Another method of achieving the same results is to input:

divert (-1)
define(. ..)

divert.

Printing
The errpriot function writes its arguments out on the standard error file. An example would be:

errprint('fatal error')

The function dumpdef is a debugging aid that dumps the current names and definitions of items
named as arguments. If no arguments are given, then all current names and definitions are
printed. Do not forget to quote the names.

The M4 Macro Processor 13

Notes

14 The M4 Macro Processor

Table of Contents
Yacc: Yet Another Compiler-Compiler

Introduction. .. 2
1: Basic Specifications. .. 5
2: Actions ... 8
3: Lexical Analysis 11
4: How the Parser Works. .. 13
5: Ambiguity and Conflicts 18
6: Precedence. .. 23
7: Error Handling .. 26
8: The Yacc Environment .. 28
9: Hints for Preparing Specifications .. 30

Input Style ... 30
Left Recursion. .. 31
Lexical Tie-ins .. 32
Reserved Words ... 33

10: Advanced Topics .. 33
Simulating Error and Accept in Actions .. 33
Accessing Values in Enclosing Rules. 34
Support for Arbitrary Value Types. .. 35

References ... 37
Appendix A: A Simple Example 38
Appendix B: Yacc Input Syntax .. 40
Appendix C: An Advanced Example 42
Appendix 0: Old Features Supported but Not Encouraged 48

Yacc: Yet Another Compiler-Compiler
Computer program input generally has some structure; in fact, every computer program that does
input can be thought of as defining an "input language" which it accepts. An input language may
be as complex as a programming language, or as simple as a sequence of numbers. Unfortunately,
usual input facilities are limited, difficult to use, and often are lax about checking their inputs
for validity.

Yacc provides a general tool for describing the input to a computer program. The Yacc user
specifies the structures of his input, together with code to be invoked as each such structure
is recognized. Yacc turns such a specification into a subroutine that handles the input process;
frequently, it is convenient and appropriate to have most of the flow of control in the user's
application handled by this subroutine.

The input subroutine produced by Yacc calls a user-supplied routine to return the next basic
input item. Thus, the user can specify his input in terms of individual input characters, or in
terms of higher level constructs such as names and numbers. The user-supplied routine may
also handle idiomatic features such as comment and continuation conventions, which typically
defy easy grammatical specification.

Yacc is written in portable C. The class of specifications accepted is a very general one: LALR(l)
grammars with disambiguating rules.

In addition to compilers for C, APL, Pascal, RATFOR, etc., Yacc has also been used for less
conventional languages, including a phototypesetter language, several desk calculator languages,
a document retrieval system, and a Fortran debugging system.

Yacc: Yet Another Compiler-Compiler 1

Introduction
Yacc provides a general tool for imposing structure on the input to a computer program. The
Yacc user prepares a specification of the input process; this includes rules describing the input
structure, code to be invoked when these rules are recognized, and a low-level routine to do the
basic input. Yacc then generates a function to control the input process. This function, called a
parser, calls the user-supplied low-level input routine (the" lexical analyzer") to pick up the basic
items (called tokens) from the input stream. These tokens are organized according to the input
structure rules, called" grammar rules"; when one of these rules has been recognized, then user
code supplied for this rule, an action, is invoked; actions have the ability to return values and
make use of the values of other actions.

Yacc is written in a portable dialect of C1 and the actions, and output subroutine, are in C as
well. Moreover, many of the syntactic conventions of Yacc follow C.

The heart of the input specification is a collection of grammar rules. Each rule describes an
allowable structure and gives it a name. For example, one grammar rule might be

date .. . year

Here, date, month_name, day, and year represent structures of interest in the input process;
presumably, month_name, day, and year are defined elsewhere. The comma "," is enclosed in
single quotes; this implies that the comma is to appear literally in the input. The colon and
semicolon merely serve as punctuation in the rule, and have no significance in controlling the
input. Thus, with proper definitions, the input

July 4. 1776

might be matched by the above rule.

An important part of the input process is carried out by the lexical analyzer. This user routine
reads the input stream, recognizing the lower level structures, and communicates these tokens
to the parser. For historical reasons, a structure recognized by the lexical analyzer is called a
"terminal symbol" , while the structure recognized by the parser is called a "nonterminal symbol" .
To avoid confusion, terminal symbols will usually be referred to as tokens.

2 Yacc: Yet Another Compiler-Compiler

There is considerable leeway in deciding whether to recognize structures using the lexical analyzer
or grammar rules. For example, the rules

month_name
month_name

'J' 'a' 'n'
'F' 'e' 'b'

'0' 'e' 'e'

might be used in the above example. The lexical analyzer would only need to recognize individual
letters, and month_name would be a nonterminal symbol. Such low-level rules tend to waste
time and space, and may complicate the specification beyond Yacc's ability to deal with it.
Usually, the lexical analyzer would recognize the month names, and return an indication that a
month_name was seen; in this case, month_name would be a token.

Literal characters such as "," must also be passed through the lexical analyzer, and are also
considered tokens.

Specification files are very flexible. It is realively easy to add to the above example the rule

date month 'I' day 'I' year

allowing

7 I 4 I 1776

as a synonym for

July 4. 1776

In most cases, this new rule could be "slipped in" to a working system with minimal effort, and
little danger of disrupting existing input.

The input being read may not conform to the specifications. These input errors are detected as
early as is theoretically possible with a left-to-right scan; thus, not only is the chance of reading
and computing with bad input data substantially reduced, but the bad data can usually be quickly
found. Error handling, prOVided as part of the input specifications, permits the reentry of bad
data, or the continuation of the input process after skipping over the bad data.

Yacc: Yet Another Compiler-Compiler 3

In some cases, Yacc fails to produce a parser when given a set of specifications. For example,
the specifications may be self contradictory, or they may require a more powerful recognition
mechanism than that available to Yacc. The former cases represent design errors; the latter
cases can often be corrected by making the lexical analyzer more powerful, or by rewriting some
of the grammar rules. While Yacc cannot handle all possible specifications, its power compares
favorably with similar systems; moreover, the constructions which are difficult for Yacc to handle
are also frequently difficult for human beings to handle. Some users have reported that the
discipline of formulating valid Yacc specifications for their input revealed errors of conception or
design early in the program development.

The theory underlying Yacc has been described elsewhere 2 3 4. Yacc has been extensively used
in numerous practical applications, including lint 5, the Portable C Compiler 6, and a system for
typesetting mathematics 7.

The next several sections describe the basic process of preparing a Yacc specification; Section
1 describes the preparation of grammar rules, Section 2 the preparation of the user supplied
actions associated with these rules, and Section 3 the preparation of lexical analyzers. Section
4 describes the operation of the parser. Section 5 discusses various reasons why Yacc may be
unable to produce a parser from a specification, and what to do about it. Section 6 describes
a simple mechanism for handling operator precedences in arithmetic expressions. Section 7
discusses error detection and recovery. Section 8 discusses the operating environment and
special features of the parsers Yacc produces. Section 9 gives some suggestions which should
improve the style and efficiency of the specifications. Section 10 discusses some advanced
topics, while Appendix A provides a brief example, and Appendix B gives a summary of the
Yacc input syntax. Appendix C gives an example using some of the more advanced features of
Yacc, and, finally, Appendix D describes mechanisms and syntax no longer actively supported,
but provided for historical continuity with older versions of Yacc.

4 Yacc: Yet Another Compiler-Compiler

1: Basic Specifications
Names refer to either tokens or nonterminal symbols. Yacc requires token names to be declared
as such. In addition, for reasons discussed in Section 3, it is often desirable to include the lexical
analyzer as part of the specification file; it may be useful to include other programs as well.
Thus, every specification file consists of three sections: the declarations, "(grammar) rules", and
programs. The sections are separated by double percent "%%" marks. (The percent "%" is
generally used in Yacc specifications as an escape character.)

In other words, a full specification file looks like

declarations
%%
rules
%%
programs

The declaration section may be empty. Moreover, if the programs section is omitted, the second
%% mark may be omitted also; thus, the smallest legal Yacc specification is

%%
rules

Blanks, tabs, and newlines are ignored except that they may not appear in names or multi­
character reserved symbols. Comments may appear wherever a name is legal; they are enclosed
in /* . . . * /, as in C.

The rules section is made up of one or more grammar rules. A grammar rule has the form:

A BODY

A represents a nonterminal name, and BODY represents a sequence of zero or more names and
literals. The colon and the semicolon are Yacc punctuation.

Names may be of arbitrary length, and may be made up of letters, dot ".", underscore "_", and
non-initial digits. Upper and lower case letters are distinct. The names used in the body of a
grammar rule may represent tokens or nonterm ina I symbols.

Yacc: Yet Another Compiler-Compiler 5

A literal consists of a character enclosed in single quotes. As in C, the backs lash "\" is an
escape character within literals, and all the C escapes are recognized. Thus

'\n' newline
'\r' return
,', single quote' ""
'\\' backslash "\"
'\t' tab
'\b' backspace
'\f' form feed
'\xxx' "xxx" in octal

For a number of technical reasons, the NUL character ('\0' or 0) should never be used in
grammar rules.

If there are several grammar rules with the same left hand side, the vertical bar "I" can be used
to avoid rewriting the left hand side. In addition, the semicolon at the end of a rule can be
dropped before a vertical bar. Thus the grammar rules

A B C D
A E F
A G

can be given to Yacc as

A B C D
E F
G

It is not necessary that all grammar rules with the same left side appear together in the grammar
rules section, although it makes the input much more readable, and easier to change.

If a nonterminal symbol matches the empty string, this can be indicated in the obvious way:

empty :

Names representing tokens must be declared; this is most simply done by writing

%token name 1 name2 . . .

in the declarations section. (See Sections 3 , 5, and 6 for much more discussion). Every name
not defined in the declarations section is assumed to represent a nonterminal symbol. Every
nonterminal symbol must appear on the left side of at least one rule.

6 Yacc: Yet Another Compiler-Compiler

Of all the nonterminal symbols, one, called the start symbol, has particular importance. The
parser is designed to recognize the start symbol; thus, this symbol represents the largest, most
general structure described by the grammar rules. By default, the start symbol is taken to be the
left hand side of the first grammar rule in the rules section. It is possible, and in fact desirable,
to declare the start symbol explicitly in the declarations section using the %start keyword:

Y.start symbol

The end of the input to the parser is signaled by a special token, called the endmarker. If the
tokens up to, but not including, the endmarker form a structure which matches the start symbol,
the parser function returns to its caller after the endmarker is seen; it accepts the input. If the
endmarker is seen in any other context, it is an error.

It is the job of the user-supplied lexical analyzer to return the endmarker when appropriate; see
section 3, below. Usually the endmarker represents some reasonably obvious I/O status, such
as "end-of-file" or "end-of-record".

Yacc: Yet Another Compiler-Compiler 7

2: Actions
With each grammar rule, the user may associate actions to be performed each time the rule is
recognized in the input process. These actions may return values, and may obtain the values
returned by previous actions. Moreover, the lexical analyzer can return values for tokens, if
desired.

An action is an arbitrary C statement, and as such can do input and output, call subprograms,
and alter external vectors and variables. An action is specified by one or more statements,
enclosed in curly braces "{" and "}". For example,

A

and

xxx

,(, B ')'
{

yyy ZZZ
{

are grammar rules with actions.

hello(1. "abc"); }

printf("a message\n");
flag = 25; }

To facilitate easy communication between the actions and the parser, the action statements are
altered slightly. The symbol "dollar sign" "$" is used as a signal to Yacc in this context.

To return a value, the action normally sets the pseudo-variable "$$" to some value. For example,
an action that does nothing but return the value 1 is

{ $$ = 1; }

To obtain the values returned by previous actions and the lexical analyzer, the action may use
the pseudo-variables $1, $2, . . ., which refer to the values returned by the components of the
right side of a rule, reading from left to right. Thus, if the rule is

A BCD

for example, then $2 has the value returned by C, and $3 the value returned by D.

As a more concrete example, consider the rule

expr ,(, expr ') ,

8 Yacc: Yet Another Compiler-Compiler

The value returned by this rule is usually the value of the expr in parentheses. This can be
indicated by

expr '(' expr ')' { $$ = $2; }

By default, the value of a rule is the value of the first element in it ($1). Thus, grammar rules
of the form

A B

frequently need not have an explicit action. This last rule is equivalent to

A: B
{ $$ = $1; }

In the examples above, all the actions came at the end of their rules. Sometimes, it is desirable
to get control before a rule is fully parsed. Yacc permits an action to be written in the middle
of a rule as well as at the end. This rule is assumed to return a value, accessible through the
usual mechanism by the actions to the right of it. In turn, it may access the values returned by
the symbols to its left. Thus, in the rule

A B
{ $$ = 1; }

C
{ x = $2; y $3; }

the effect is to set x to 1, and y to the value returned by C.

Actions that do not terminate a rule are actually handled by Yacc by manufacturing a new
nonterminal symbol name, and a new rule matching this name to the empty string. The interior
action is the action triggered off by recognizing this added rule. Yacc actually treats the above
example as if it had been written:

$ACT /* empty */
{ $$ 1; }

A B $ACT C
{ x = $2; y $3; }

A good understanding of how Yacc handles interior actions can be important when interpreting
conflict messages for such rules (see Section 5 of this tutorial). For example, conflicts in the
grammar specification occur when an interior action occurs in a rule before the parser can be
sure which rule is being reduced.

Yacc: Yet Another Compiler-Compiler 9

In many applications, output is not done directly by the actions; rather, a data structure, such
as a parse tree, is constructed in memory, and transformations are applied to it before output
is generated. Parse trees are particularly easy to construct, given routines to build and maintain
the tree structure desired. For example, suppose there is a C function node, written so that the
call

node(L, n1, n2)

creates a node with label L, and descendants n1 and n2, and returns the index of the newly
created node. Then parse tree can be built by supplying actions such as:

expr expr '+' expr
{ $$ = node('+', $1, $3); }

in the specification.

The user may define other variables to be used by the actions. Declarations and definitions can
appear in the declarations section, enclosed in the marks "%{" and "%}". These declarations
and definitions have global scope, so they are known to the action statements and the lexical
analyzer. For example,

%{ int variable = 0; %}

could be placed in the declarations section, making variable accessible to all of the actions. The
Yacc parser uses only names beginning in "yy" for its own internal variables, so users should
avoid such names.

In these examples, all the values are integers: Section 10 discusses values of other types.

10 Yacc: Yet Another Compiler-Compiler

3: Lexical Analysis
The user must supply a lexical analyzer to read the input stream and communicate tokens (with
values, if desired) to the parser. The lexical analyzer is an integer-valued function called yylex.
The function returns an integer, the "token number", representing the kind of token read. If
there is a value associated with that token, it should be assigned to the external variable yylual.

The parser and the lexical analyzer must agree on these token numbers in order for commu­
nication between them to take place. The numbers may be chosen by Yacc, or chosen by the
user. In either case, the "# define" mechanism of C is used to allow the lexical analyzer to
return these numbers symbolically. For example, suppose that the token name DIGIT has been
defined in the declarations section of the Yacc specification file. The relevant portion of the
lexical analyzer might look like:

yylexO{
extern int yylval;
int c;

c = getcharO ;

switch(c) {

case '0':
case ' l' :

case '9':
yylval = c- '0';
return(DIGIT);

}

The intent is to return a token number of DIGIT, and a value equal to the numerical value
of the digit. Provided that the lexical analyzer code is placed in the programs section of the
specification file, the identifier DIGIT will be defined as the token number associated with the
token DIGIT.

This mechanism leads to clear, easily modified lexical analyzers; the only pitfall is the need to
avoid using any token names in the grammar that are reserved or significant in C or the parser;
for example, the use of token names if or while will almost certainly cause severe difficulties
when the lexical analyzer is compiled. The token name error is reserved for error handling, and
should not be used naively (see Section 7).

Yacc: Yet Another Compiler-Compiler 11

As mentioned above, the token numbers may be chosen by Yacc or by the user. In the default
situation, the numbers are chosen by Yacc. The default token number for a literal character is
the numerical value of the character in the local character set. Other names are assigned token
numbers starting at 257.

To assign a token number to a token (including literals), the first appearance of the token name
or literal in the declarations section can be immediately followed by a nonnegative integer. This
integer is taken to be the token number of the name or literal. Names and literals not defined by
this mechanism retain their default definition. It is important that all token numbers be distinct.

For historical reasons, the endmarker must have token number 0 or negative. This token number
cannot be redefined by the user; thus, all lexical analyzers should be prepared to return 0 or
negative as a token number upon reaching the end of their input.

The Lex program is a very useful tool for constructing lexical analyzers. Lexical analyzers are
designed to work in close harmony with Yacc parsers, but they use regular expressions instead
of grammar rules. Lex can be easily used to produce quite complicated lexical analyzers, but
there remain some languages (such as FORTRAN) which do not fit any theoretical framework,
and whose lexical analyzers must be crafted by hand.

12 Yacc: Yet Another Compiler-Compiler

4: How the Parser Works
Yacc turns the specification file into a C program, which parses the input according to the
specification given. The algorithm used to go from the specification to the parser is complex,
and will not be discussed here (see the references for more information). The parser itself,
however, is relatively simple, and understanding how it works, while not strictly necessary, will
nevertheless make treatment of error recovery and ambiguities much more comprehensible.

The parser produced by Yacc consists of a finite state machine with a stack. The parser is also
capable of reading and remembering the next input token (called the lookahead token). The
»current state" is always the one on the top of the stack. The states of the finite state machine
are given small integer labels; initially, the machine is in state 0, the stack contains only state 0,
and no lookahead token has been read.

The machine has only four actions available to it, called shift, reduce, accept, and error. A move
of the parser is done as follows:

1. Based on its current state, the parser decides whether it needs a lookahead token to decide
what action should be done; if it needs one, and does not have one, it calls yylex to obtain
the next token.

2. Using the current state, and the lookahead token if needed, the parser decides on its next
action, and carries it out. This may result in states being pushed onto the stack, or popped
off of the stack, and in the lookahead token being processed or left alone.

The shift action is the most common action the parser takes. Whenever a shift action is taken,
there is always a lookahead token. For example, in state 56 there may be an action:

IF shift 34

which says, in state 56, if the lookahead token is IF, the current state (56) is pushed down on
the stack, and state 34 becomes the current state (on the top of the stack). The lookahead
token is cleared.

The reduce action keeps the stack from growing without bounds. Reduce actions are appropriate
when the parser has seen the right hand side of a grammar rule, and is prepared to announce
that it has seen an instance of the rule, replacing the right hand side by the left hand side. It
may be necessary to consult the lookahead token to decide whether to reduce, but usually it is
not; in fact, the default action (represented by a ".") is often a reduce action.

Yacc: Yet Another Compiler-Compiler 13

Reduce actions are associated with individual grammar rules. Grammar rules are also given
small integer numbers, leading to some confusion. The action

reduce 18

refers to grammar rule 18, while the action

IF shift 34

refers to state 34.

Suppose the rule being reduced is

A x y z

The reduce action depends on the left hand symbol (A in this case), and the number of symbols
on the right hand side (three in this case). To reduce, first pop off the top three states from
the stack (In general, the number of states popped equals the number of symbols on the right
side of the rule). In effect, these states were the ones put on the stack while recognizing x, y,

and z, and no longer serve any useful purpose. After popping these states, a state is uncovered
which was the state the parser was in before beginning to process the rule. Using this uncovered
state, and the symbol on the left side of the rule, perform what is in effect a shift of A. A new
state is obtained, pushed onto the stack, and parsing continues. There are significant differences
between the processing of the left hand symbol and an ordinary shift of a token, however, so
this action is called a goto action. In particular, the Iookahead token is cleared by a shift, and is
not affected by a goto. In any case, the uncovered state contains an entry such as:

A goto 20

causing state 20 to be pushed onto the stack, and become the current state.

In effect, the reduce action "turns back the clock" in the parse, popping the states off the stack
to go back to the state where the right hand side of the rule was first seen. The parser then
behaves as if it had seen the left side at that time. If the right hand side of the rule is empty,
no states are popped off of the stack: the uncovered state is in fact the current state.

The reduce action is also important in the treatment of user-supplied actions and values. When
a rule is reduced, the code supplied with the rule is executed before the stack is adjusted. In
addition to the stack holding the states, another stack, running in parallel with it, holds the
values returned from the lexical analyzer and the actions. When a shift takes place, the external
variable yylval is copied onto the value stack. After the return from the user code, the reduction
is carried out. When the goto action is done, the external variable yyval is copied onto the value
stack. The pseudo-variables $1, $2, etc., refer to the value stack.

14 Yacc: Yet Another Compiler-Compiler

The other two parser actions are conceptually much simpler. The accept action indicates that
the entire input has been seen and that it matches the specification. This action appears only
when the lookahead token is the endmarker, and indicates that the parser has successfully done
its job. The error action, on the other hand, represents a place where the parser can no longer
continue parsing according to the specification. The input tokens it has seen, together with the
lookahead token, cannot be followed by anything that would result in a legal input. The parser
reports an error, and attempts to recover the situation and resume parsing: the error recovery
(as opposed to the detection of error) will be covered in Section 7.

It is time for an example! Consider the specification

%token DING DONG DELL
%%
rhyme

sound

place

sound place

DING DONG

DELL

When Yacc is invoked with the -v option, a file called y.output is produced, with a human­
readable description of the parser. The y.output file corresponding to the above grammar (with
some statistics stripped off the end) is:

state 0
$accept _rhyme $end

DING shift 3
error

rhyme goto 1
sound goto 2

state 1
$accept rhyme_$end

$end accept
error

state 2
rhyme sound_place

DELL shift 5
error

place goto 4

state 3

Yacc: Yet Another Compiler-Compiler 15

state 4

sound

DONG shift 6
error

rhyme sound place_

reduce 1

state 5
place (3)

reduce 3

state 6
sound DING DONG_

reduce 2

(1)

(2)

Notice that, in addition to the actions for each state, there is a description of the parsing rules
being processed in each state. The _ character is used to indicate what has been seen, and what
is yet to come, in each rule. Suppose the input is

DING DONG DELL

It is instructive to follow the steps of the parser while processing this input.

Initially, the current state is state 0. The parser needs to refer to the input in order to decide
between the actions available in state 0, so the first token, DING, is read, becoming the lookahead
token. The action in state ° on DING is "shift 3", so state 3 is pushed onto the stack, and the
lookahead token is cleared. State 3 becomes the current state. The next token, DONG, is read,
becoming the lookahead token. The action in state 3 on the token DONG is "shift 6", so state
6 is pushed onto the stack, and the lookahead is cleared. The stack now contains 0, 3, and 6.
In state 6, without even consulting the lookahead, the parser reduces by rule 2.

sound DING DONG

This rule has two symbols on the right hand side, so two states, 6 and 3, are popped off of the
stack, uncovering state 0. Consulting the description of state 0, looking for a goto on sound,

sound goto 2

is obtained; thus state 2 is pushed onto the stack, becoming the current state.

16 Yacc: Yet Another Compiler-Compiler

In state 2, the next token, DELL, must be read. The action is "shift 5", so state 5 is pushed
onto the stack, which now has 0, 2, and 5 on it, and the lookahead token is cleared. In state 5,
the only action is to reduce by rule 3. This has one symbol on the right hand side, so one state,
5, is popped off, and state 2 is uncovered. The goto in state 2 on place, the left side of rule 3,
is state 4. Now, the stack contains 0, 2, and 4. In state 4, the only action is to reduce by rule
1. There are two symbols on the right, so the top two states are popped off, uncovering state
o again. In state 0, there is a goto on rhyme causing the parser to enter state 1. In state 1, the
input is read; the endmarker is obtained, indicated by "$end" in the y.output file. The action in
state 1 when the endmarker is seen is to accept, successfully ending the parse.

The reader is urged to consider how the parser works when confronted with such incorrect
strings as

DING DONG DONG,
DING DONG,
DING DONG DELL DELL,

etc. A few minutes spent with this and other simple examples will probably be repaid when
problems arise in more complicated contexts.

Yacc: Yet Another Compiler-Compiler 17

5: Ambiguity and Conflicts
A set of grammar rules is ambiguous if there is some input string that can be structured in two
or more different ways. For example, the grammar rule

expr expr '-' expr

is a natural way of expressing the fact that one way of forming an arithmetic expression is to put
two other expressions together with a minus sign between them. Unfortunately, this grammar
rule does not completely specify the way that all complex inputs should be structured. For
example, if the input is

expr expr expr

the rule allows this input to be structured as either

expr expr expr

or as

expr expr expr

(The first is called "left association" , the second "right association").

Yacc detects such ambiguities when it is attempting to build the parser. It is instructive to
consider the problem that confronts the parser when it is given an input such as

expr expr expr

When the parser has read the second expr, the input that it has seen:

expr expr

matches the right side of the grammar rule above. The parser could reduce the input by applying
this rule; after applying the rule; the input is reduced to expr (the left side of the rule). The
parser would then read the final part of the input:

expr

and again reduce. The effect of this is to take the left associative interpretation.

18 Yacc: Yet Another Compiler-Compiler

Alternatively, when the parser has seen

expr expr

it could defer the immediate application of the rule, and continue reading the input until it had
seen

expr expr expr

It could then apply the rule to the rightmost three symbols, reducing them to expr and leaving

expr expr

Now the rule can be reduced once more; the effect is to take the right associative interpretation.
Thus, having read

expr expr

the parser can do two legal things, a shift or a reduction, and has no way of deciding between
them. This is called a "shift / reduce conflict". It may also happen that the parser has a choice
of two legal reductions; this is called a "reduce / reduce conflict". Note that there are never any
"Shift/shift" conflicts.

When there are shift/reduce or reduce/reduce conflicts, Yacc still produces a parser. It does
this by selecting one of the valid steps wherever it has a choice. A rule describing which choice
to make in a given situation is called a "disambiguating rule" .

Yacc invokes two disambiguating rules by default:

l. In a shift/reduce conflict, the default is to do the shift.

2. In a reduce/reduce conflict, the default is to reduce by the earlier grammar rule (in the
input sequence).

Rule 1 implies that reductions are deferred whenever there i~ a choice, in favor of shifts. Rule
2 gives the user rather crude control over the behavior of the parser in this situation, but
reduce/reduce conflicts should be avoided whenever possible.

Conflicts may arise because of mistakes in input or logic, or because the grammar rules, while
consistent, require a more complex parser than Yacc can construct. The use of actions within
rules can also cause conflicts, if the action must be done before the parser can be sure which rule
is being recognized. In these cases, the application of disambiguating rules is inappropriate, and
leads to an incorrect parser. For this reason, Yacc always reports the number of shift/reduce and
reduce/reduce conflicts resolved by Rule 1 and Rule 2. To obtain more information about rules
conflicts encountered by Yacc, invoke yacc with the -v option, then scan the resulting y.output
file.

Yacc: Yet Another Compiler-Compiler 19

In general, whenever it is possible to apply disambiguating rules to produce a correct parser, it
is also possible to rewrite the grammar rules so that the same inputs are read but there are no
conflicts. For this reason, most previous parser generators have considered conflicts to be fatal
errors. Our experience has suggested that this rewriting is somewhat unnatural, and produces
slower parsers; thus, Yacc will produce parsers even in the presence of conflicts.

As an example of the power of disambiguating rules, consider a fragment from a programming
language involving an "if-then-else" construction:

stat IF
IF

,(, cond ')'
'(' cond ,),

stat_
stat_ELSE stat

In these rules, IF and ELSE are tokens, cond is a nonterminal symbol describing conditional
(logical) expressions, and stat is a nonterminal symbol describing statements. The first rule will
be called the simple-if rule, and the second the if-else rule.

These two rules form an ambiguous construction, since input of the form

IF C1 IF C2 S1 ELSE S2

can be structured according to these rules in two ways:

IF C1 {

IF C2 S1
}

ELSE S2

or

IF C1 {

IF C2 S1
ELSE S2
}

The second interpretation is the one given in most programming languages having this construct.
Each ELSE is associated with the last preceding "un-ELSE'd" IF. In this example, consider the
situation where the parser has seen

IF C1 IF C2 S1

20 Yacc: Yet Another Compiler-Compiler

and is looking at the ELSE. It can immediately reduce by the simple-if rule to get

IF (C1 stat

and then read the remaining input,

ELSE S2

and reduce

IF (C1 stat ELSE S2

by the if-else rule. This leads to the first of the above groupings of the input.

On the other hand, the ELSE may be shifted, S2 read, and then the right hand portion of

IF (C1 IF C2 S1 ELSE S2

can be reduced by the if-else rule to get

IF (C1 stat

which can be reduced by the simple-if rule. This leads to the second of the above groupings of
the input, which is usually desired.

Once again the parser can do two valid things - there is a shift/reduce conflict. The application
of disambiguating rule 1 tells the parser to shift in this case, which leads to the desired grouping.

This shift/reduce conflict arises only when there is a particular current input symbol, ELSE, and
particular inputs already seen, such as

IF C1 IF (C2) S1

In general, there may be many conflicts, and each one will be associated with an input symbol
and a set of previously read inputs. The previously read inputs are characterized by the state
of the parser.

Yacc: Yet Another Compiler-Compiler 21

The conflict messages of Yacc are best understood by examining the verbose (-v) option output
file. For example, the output corresponding to the above conflict state might be:

23: shift/reduce conflict (shift 45. reduce 18) on ELSE

state 23

stat
stat

IF
IF

cond
cond

ELSE shift 45
reduce 18

stat (18)
stat ELSE stat

The first line describes the conflict, giving the state and the input symbol. The ordinary state
description follows, giving the grammar rules active in the state, and the parser actions. Recall
that the underline marks the portion of the grammar rules which has been seen. Thus in the
example, in state 23 the parser has seen input corresponding to

IF cond) stat

and the two grammar rules shown are active at this time. The parser can do two possible things.
If the input symbol is ELSE, it is possible to shift into state 45. State 45 will have, as part of
its description, the line

stat IF cond) stat ELSE_stat

since the ELSE will have been shifted in this state. Back in state 23, the alternative action,
described by".", is to be done if the input symbol is not mentioned explicitly in the above
actions; thus, in this case, if the input symbol is not ELSE, the parser reduces by grammar rule
18:

stat IF '(' cond ')' stat

Once again, notice that the numbers following "shift" commands refer to other states, while the
numbers following "reduce" commands refer to grammar rule numbers. In the y.output file, the
rule numbers are printed after those rules which can be reduced. In most states, only one reduce
action is possible in the state; the default command. If you encounter unexpected shift/reduce
conflicts, look at the verbose output to decide whether the default actions are appropriate. In
really tough cases, you might need to know more about the behavior and construction of the
parser than can be covered here. In this case, one of the theoretical references234 might be
appropriate, or the services of a local expert might be needed.

22 Yacc: Yet Another Compiler-Compiler

6: Precedence
There is one common situation where the rules given above for resolving conflicts are not suffi­
cient; this is in the parsing of arithmetic expressions. Most of the commonly used constructions
for arithmetic expressions can be naturally described by the notion of precedence levels for op­
erators, together with information about left or right associativity. It turns out that ambiguous
grammars with appropriate disambiguating rules can be used to create parsers that are faster
and easier to write than parsers constructed from unambiguous grammars. The basic notion is
to write grammar rules of the form

expr expr OP expr

and

expr UNARY expr

for all binary and unary operators desired. This creates a very ambiguous grammar, with many
parsing conflicts. As disambiguating rules, the user specifies the precedence, or binding strength,
of all the operators, and the associativity of the binary operators. This information is sufficient
to allow Yacc to resolve the parsing conflicts in accordance with these rules, and construct a
parser that realizes the desired precedences and associativities.

The precedences and associativities are attached to tokens in the declarations section. This is
done by a series of lines beginning with a Yacc keyword: %left, %right, or %nonassoc, followed
by a list of tokens. All of the tokens on the same line are assumed to have the same precedence
level and associativity; the lines are listed in order of increasing precedence or binding strength.
Thus,

%left '+' '-'
%left '*' 'I'

describes the precedence and associativity of the four arithmetic operators. Plus and minus are
left associative, and have lower precedence than star and slash, which are also left associative.
The keyword %right is used to describe right associative operators, and the keyword %nonassoc
is used to describe operators, like the operator .LT. in Fortran, that may not associate with
themselves; thus,

A .LT. B .LT. C

is illegal in Fortran, and such an operator would be described with the keyword %nonassoc in
Yacc. As an example of the behavior of these declarations, the description

Yacc: Yet Another Compiler-Compiler 23

%right '='
%left '+' '- ,
%left '* ' , f'

'1..%

expr expr ,-, expr
expr '+' expr
expr '- , expr
expr '* ' expr
expr ' f' expr
NAME

might be used to structure the input

a = b e

as follows:

a = (b = («c*d)-e) - (f*g)))

When this mechanism is used, unary operators must, in general, be given a precedence. Some­
times a unary operator and a binary operator have the same symbolic representation, but different
precedences. An example is unary and binary '-'; unary minus may be given the same strength
as multiplication, or even higher, while binary minus has a lower strength than multiplication.
The keyword, %prec, changes the precedence level associated with a particular grammar rule.
%prec appears immediately after the body of the grammar rule, before the action or closing
semicolon, and is followed by a token name or literal. It causes the precedence of the grammar
rule to become that of the following token name or literal. For example, to make unary minus
have the same precedence as multiplication the rules might resemble:

%left '+' '-'
%left '*' 'f'

%%

expr expr
expr
expr
expr
'- ,
NAME

'+' expr
'- , expr
'* ' expr
' f' expr

expr %prec

24 Yacc: Yet Another Compiler-Compiler

'* '

A token declared by %Ieft, %right, and %nonassoc need not be, but may be, declared by %token
as well.

The precedences and associativities are used by Yacc to resolve parsing conflicts; they give rise
to disambiguating rules. Formally, the rules work as follows:

1. The precedences and associativities are recorded for those tokens and literals that have
them.

2. A precedence and associativity is associated with each grammar rule; it is the precedence
and associativity of the last token or literal in the body of the rule. If the %prec construction
is used, it overrides this default. Some grammar rules may have no precedence and
associativity associated with them. This occurs when the last token or literal in the body
of the rule (or the token referenced by Y.prec following a rule) has no defined precedence
or associativity.

3. When there is a reduce/reduce conflict, or there is a shift/reduce conflict and either
the input symbol or the grammar rule has no precedence and associativity, then the two
disambiguating rules given at the beginning of the section are used, and the conflicts are
reported.

4. If there is a shift/reduce conflict, and both the grammar rule and the input character have
precedence and associativity associated with them, then the conflict is resolved in favor of
the action (shift or reduce) associated with the higher precedence. If the precedences are
the same, then the associativity is used; left associative implies reduce, right associative
implies shift, and nonassociating implies error.

Conflicts resolved by precedence are not counted in the number of shift/reduce and re­
duce/reduce conflicts reported by Yacc. This means that mistakes in the specification of prece­
dences may disguise errors in the input grammar; it is a good idea to be sparing with precedences,
and use them in an essentially "cookbook" fashion, until some experience has been gained. The
y.output file is very useful in deciding whether the parser is actually doing what was intended.

Yacc: Yet Another Compiler-Compiler 25

7: Error Handling
Error handling is an extremely difficult area, and many of the problems are semantic ones. When
an error is found, for example, it may be necessary to reclaim parse tree" storage, delete or alter
symbol table entries, and, typically, set switches to avoid generating any further output.

It is seldom acceptable to stop all processing when an error is found; it is more useful to continue
scanning the input to find further syntax errors. This leads to the problem of getting the parser
"restarted" after an error. A general class of algorithms to do this involves discarding a number
of tokens from the input string, and attempting to adjust the parser so that input can continue.

To allow the user some control over this process, Yacc provides a simple, but reasonably general,
feature. The token name "error" is reserved for error handling. This name can be used in
grammar rules; in effect, it suggests places where errors are expected, and recovery might take
place. The parser pops its stack until it enters a state where the token "error" is legal. It
then behaves as if the token "error" were the current lookahead token, and performs the action
encountered. The lookahead token is then reset to the token that caused the error. If no special
error rules have been specified, the processing halts when an error is detected.

In order to prevent a cascade of error messages, the parser, after detecting an error, remains
in error state until three tokens have been successfully read and shifted. If an error is detected
when the parser is already in error state, no message is given, and the input token is quietly
deleted.

As an example, a rule of the form

stat error

would, in effect, mean that on a syntax error the parser would attempt to skip over the statement
in which the error was seen. More precisely, the parser will scan ahead, looking for three tokens
that might legally follow a statement, and start processing at the first of these; if the beginnings of
statements are not sufficiently distinctive, it may make a false start in the middle of a statement,
and end up reporting a second error where there is in fact no error.

Actions may be used with these special error rules. These actions might attempt to reinitialize
tables, reclaim symbol table space, etc.

26 Yacc: Yet Another Compiler-Compiler

Error rules such as the above are very general, but difficult to control. Somewhat easier are
rules such as

stat error

Here, when there is an error, the parser attempts to skip over the statement, but will do so
by skipping to the next ';'. All tokens after the error and before the next ';' cannot be shifted,
and are discarded. When the ';' is seen, this rule will be reduced, and any "cleanup" action
associated with it performed.

Another form of error rule arises in interactive applications, where it may be desirable to permit
a line to be reentered after an error. A possible error rule might be

input error '\n' { printf("Reenter last line: II); } input
{$$ $4; }

There is one potential difficulty with this approach; the parser must correctly process three input
tokens before it admits that it has correctly resynchronized after the error. If the reentered line
contains an error in the first two tokens, the parser deletes the offending tokens, and gives no
message; this is clearly unacceptable. For this reason, there is a mechanism that can be used
to force the parser to believe that an error has been fully recovered from. The statement

yyerrok ;

in an action resets the parser to its normal mode. The last example is better written

input error '\n'
{ yyerrok;

printf("Reenter last line: II) ; }

input
{ $$ $4; }

As mentioned above, the token seen immediately after the "error" symbol is the input token at
which the error was discovered. Sometimes, this is inappropriate; for example, an error recovery
action might take upon itself the job of finding the correct place to resume input. In this case,
the previous lookahead token must be cleared. The statement

yyclearin ;

Yacc: Yet Another Compiler-Compiler 27

in an action will have this effect. For example, suppose the action after error were to call some
sophisticated resynchronization routine, supplied by the user, that attempted to advance the
input to the beginning of the next valid statement. After this routine was called, the next token
returned by yylex would presumably be the first token in a legal statement; the old, illegal token
must be discarded, and the error state reset. This could be done by a rule like

stat error
{ resynch();

yyerrok ;
yyclearin ; }

These mechanisms are admittedly crude, but do allow for a simple, fairly effective recovery of
the parser from many errors; moreover, the user can get control to deal with the error actions
required by other portions of the program.

8: The Yacc Environment
When the user inputs a specification to Yacc, the output is a file of C programs, called y.tab.c

on most systems (due to local file system conventions, the names may differ from installation to
installation). The function produced by Yacc is called yyparse\Et it is an integer valued function.
When it is called, it in turn repeatedly calls yylex, the lexical analyzer supplied by the user
(see Section 3) to obtain input tokens. Eventually, either an error is detected, in which case (if
no error recovery is possible) yyparse returns the value 1, or the lexical analyzer returns the
endmarker token and the parser accepts. In this case, yyparse returns the value O.

The user must provide a certain amount of environment for this parser in order to obtain a
working program. For example, as with every C program, a program called main must be
defined, that eventually calls yyparse. In addition, a routine called yyerror prints a message
when a syntax error is detected.

28 Yacc: Yet Another Compiler-Compiler

These two routines must be supplied in one form or another by the user. To ease the initial
effort of using Yacc, a library has been provided with default versions of main and yyerror. The
name of this library is system dependent; on HP-UX systems, the library is accessed by a -ly
argument to the loader . To show the triviality of these default programs, the source is given
below:

mainO{

and

return(yyparse());
}

include <stdio.h>

yyerror(s) char *s; {
fprintf(stderr. "%s\n". s);
}

The argument to yyerror is a string containing an error message, usually the string "syntax
error". The average application will want to do better than this. Ordinarily, the program should
keep track of the input line number, and print it along with the message when a syntax error
is detected. The external integer variable yychar contains the look ahead token number at the
time the error was detected; this may be of some interest in giving better diagnostics. Since
the main program is probably supplied by the user (to read arguments, etc.) the Yacc library is
useful only in small projects, or in the earliest stages of larger ones.

The external integer variable yydebug is normally set to O. If it is set to a nonzero value, the parser
will output a verbose description of its actions, including a discussion of which input symbols
have been read, and what the parser actions are. Depending on the operating environment, it
may be possible to set this variable by using a debugging system.

Yacc: Yet Another Compiler-Compiler 29

9: Hints for Preparing Specifications
This section contains miscellaneous hints on preparing efficient, easy to change, and clear spec­
ifications. The individual subsections are more or less independent.

Input Style
It is difficult to provide rules with substantial actions and still have a readable specification file.
The following style hints owe much to Brian Kernighan.

1. Use all capital letters for token names, all lower case letters for nonterminal names. This
rule comes under the heading of "knowing who to blame when things go wrong."

2. Put grammar rules and actions on separate lines. This allows either to be changed without
an automatic need to change the other.

3. Put all rules with the same left hand side together. Put the left hand side in only once,
and let all following rules begin with a vertical bar.

4. Put a semicolon only after the last rule with a given left hand side, and put the semicolon
on a separate line. This allows new rules to be easily added.

5. Indent rule bodies by two tab stops, and action bodies by three tab stops.

The example in Appendix A is written following this style, as are the examples in the text of
this paper (where space permits). The user must make up his own mind about these stylistic
questions; the central problem, however, is to make the rules visible through the morass of
action code.

30 Yacc: Yet Another Compiler-Compiler

Left Recursion
The algorithm used by the Yacc parser encourages so called "left recursive" grammar rules:
rules of the form

name

These rules frequently arise when writing specifications of sequences and lists:

list item
list J J item .

and

seq item
seq item

In each of these cases, the first rule will be reduced for the first item only, and the second rule
will be reduced for the second and all succeeding items.

With right recursive rules, such as

seq item
item seq

the parser would be a bit bigger, and the items would be seen, and reduced, from right to left.
More seriously, an internal stack in the parser would be in danger of overflowing if a very long
sequence were read. Thus, the user should use left recursion wherever reasonable. It is worth
considering whether a sequence with zero elements has any meaning, and if so, consider writing
the sequence specification with an empty rule:

seq /* empty */ I seq item

Once again, the first rule would always be reduced exactly once, before the first item was read,
and then the second rule would be reduced once for each item read. Permitting empty sequences
often leads to increased generality. However, conflicts might arise if Yacc is asked to decide
which empty sequence it has seen, when it hasn't seen enough to know!

Yacc: Yet Another Compiler-Compiler 31

Lexical Tie-ins
Some lexical decisions depend on context. For example, the lexical analyzer might want to
delete blanks normally, but not within quoted strings. Or names might be entered into a symbol
table in declarations, but not in expressions.

One way of handling this situation is to create a global flag that is examined by the lexical analyzer,
and set by actions. For example, suppose a program consists of 0 or more declarations, followed
by 0 or more statements. Consider:

%{
int dflag;

%}
other declarations

%%

prog decls stats

decls /* empty */
{ dflag 1; }

decls declaration

stats /* empty */
{ dflag = 0; }

stats statement

other rules ...

The flag dflag is now 0 when reading statements, and 1 when reading declarations, except for
the first token in the first statement. This token must be seen by the parser before it can tell that
the declaration section has ended and the statements have begun. In many cases, this single
token exception does not affect the lexical scan.

This kind of "backdoor" approach can be elaborated to a noxious degree. Nevertheless, it
represents a way of doing some things that are difficult, if not impossible, to do otherwise.

32 Yacc: Yet Another Compiler-Compiler

Reserved Words
Some programming languages permit the user to use words like "if", which are normally reserved,
as label or variable names, provided that such use does not conflict with the legal use of these
names in the programming language. This is extremely hard to do in the framework of Yacc; it
is difficult to pass information to the lexical analyzer telling it "this instance of 'if' is a keyword,
and that instance is a variable". The user can make a stab at it, using the mechanism described
in the last subsection, but it is difficult.

A number of ways of making this easier are under advisement. Until then, it is better that
the keywords be reserved; that is, be forbidden for use as variable names. There are powerful
stylistic reasons for preferring this, anyway.

1 0: Advanced Topics
This section discusses a number of advanced features of Yacc.

Simulating Error and Accept in Actions
The parsing actions of error and accept can be simulated in an action by use of macros YYAC­
CEPT and YYERROR. YYACCEPT causes yyparse to return the value 0; YYERROR causes the
parser to behave as if the current input symbol had been a syntax error; yyerror is called, and
error recovery takes place. These mechanisms can be used to simulate parsers with multiple
endmarkers or context-sensitive syntax checking.

Yacc: Yet Another Compiler-Compiler 33

Accessing Values in Enclosing Rules.
An action may refer to values returned by actions to the left of the current rule. The mechanism
is simply the same as with ordinary actions, a dollar sign followed by a digit, but in this case the
digit may be 0 or negative. Consider

sent

adj

noun

adj noun verb adj noun
{ look at the sentence . }

THE {
YOUNG {

DOG
{

CRONE

$$ THE; }
$$ YOUNG; }

$$ = DOG; }

{ if($0 == YOUNG){
printf(

}
$$ CRONE;

}

"what?\n");

In the action following the word CRONE, a check is made that the preceding token shifted was
not. YOUNG. Obviously, this is only possible when a great deal is known about what might
precede the symbol noun in the input. There is also a distinctly unstructured flavor about this.
Nevertheless, at times this mechanism will save a great deal of trouble, especially when a few
combinations are to be excluded from an otherwise regular structure.

34 Yacc: Yet Another Compiler-Compiler

Support for Arbitrary Value Types
By default, the values returned by actions and the lexical analyzer are integers. Yacc can also
support values of other types, including structures. In addition, Yacc keeps track of the types,
and inserts appropriate union member names so that the resulting parser will be strictly type
checked. The Yacc value stack (see Section 4) is declared to be a union of the various types
of values desired. The user declares the union, and associates union member names to each
token and nonterminal symbol having a value. When the value is referenced through a $$ or
$n construction, Yacc will automatically insert the appropriate union name, so that no unwanted
conversions will take place. In addition, type checking commands such as Lint5 will be far more
silent.

There are three mechanisms used to provide for this typing. First, there is a way of defining the
union; this must be done by the user since other programs, notably the lexical analyzer, must
know about the union member names. Second, there is a way of associating a union member
name with tokens and nonterminals. Finally, there is a mechanism for describing the type of
those few values where Yacc can not easily determine the type.

To declare the union, the user includes in the declaration section:

%union {
body of union ...
}

This declares the Yacc value stack, and the external variables yylual and yyual, to have type
equal to this union. If Yacc was invoked with the -d option, the union declaration is copied
onto the y.tab.h file. Alternatively, the union may be declared in a header file, and a typedef
used to define the variable YYSTYPE to represent this union. Thus, the header file might also
have said:

typedef union {
body of union
} YYSTYPE;

The header file must then also be included in the declarations section, by use of %{ and %}.

Yacc: Yet Another Compiler-Compiler 35

Once YYSTYPE is defined, the union member names must be associated with the various
terminal and nonterminal names. The construction

< name>

is used to indicate a union member name. If this follows one of the keywords %token, %left,
%right, and %nonassoc, the union member name is associated with the tokens listed. Thus,
saying

%left <optype> '+' '- ,

will cause any reference to values returned by these two tokens to be tagged with the union
member name optype. Another keyword, %type, is used similarly to associate union member
names with nonterminals. Thus, one might say

%type <nodetype> expr stat

There remain a couple of cases where these mechanisms are insufficient. If there is an action
within a rule, the value returned by this action has no "a priori" type. Similarly, reference to
left context values (such as $0 - see the previous subsection) leaves Yacc with no easy way
of knowing the type. In this case, a type can be imposed on the reference by inserting a union
member name, between < and >, immediately after the first $. An example of this usage is

rule aaa { $<intval>$ = 3; } bbb
{ fun($<intval>2, $<other>O); }

This syntax has little to recommend it, but the situation arises rarely.

A sample specification is given in Appendix C. The facilities in this subsection are not triggered
until they are used: in particular, the use of %type will turn on these mechanisms. When they
are used, there is a fairly strict level of checking. For example, use of $n or $$ to refer to
something with no defined type is diagnosed. If these facilities are not triggered, the Yacc value
stack is used to hold int's, as was true historically.

36 Yacc: Yet Another Compiler-Compiler

References
1. B. W. Kernighan and D. M. Ritchie, The C Programming Language, Prentice-Hall, Engle­

wood Cliffs, New Jersey (1978).

2. A. V. Aho and S. C. Johnson, "LR Parsing," Compo Surveys 6(2) pp. 99-124 (June
1974).

3. A. V. Aho, S. C. Johnson, and J. D. Ullman, "Deterministic Parsing of Ambiguous Gram­
mars," Comm. Assoc. Compo Mach. 18(8) pp. 441-452 (August 1975).

4. A. V. Aho and J. D. Ullman, Principles of Compiler Design, Addison-Wesley, Reading,
Mass. (1977).

5. S. C. Johnson, "Lint, a C Program Checker," Compo Sci. Tech. Rep. No. 65 (December
1977).

6. S. C. Johnson, "A Portable Compiler: Theory and Practice," Proc. 5th ACM Symp. on
Principles of Programming Languages, (January 1978).

7. B. W. Kernighan and L. L. Charry, "A System for Typesetting Mathematics," Comm.
Assoc. Compo Mach. 18 pp. 151-157 (March 1975).

8. M. E. Lesk, "Lex - A Lexical Analyzer Generator," Compo Sci. Tech. Rep. No. 39,
Bell Laboratories, Murray Hill, New Jersey (October 1975). (See HP-UX Concepts and
Tutorials, Vol. 1.)

Yacc: Yet Another Compiler-Compiler 37

Appendix A: A Simple Example
This example gives the complete Yacc specification for a small desk calculator; the desk calculator
has 26 registers, labeled "a" through "z" ,and accepts arithmetic expressions made up of the
operators +, -, ., /, % (mod operator), & (bitwise and), I (bitwise or), and assignment. If an
expression at the top level is an assignment, the value is not printed; otherwise it is. As in C, an
integer that begins with 0 (zero) is assumed to be octal; otherwise, it is assumed to be decimal.

As an example of a Yacc specification, the desk calculator does a reasonable job of showing
how precedences and ambiguities are used, and demonstrating simple error recovery. The major
oversimplifications are that the lexical analysis phase is much simpler than for most applications,
and the output is produced immediately, line by line. Note the way that decimal and octal integers
are read in by the grammar rules; This job is probably better done by the lexical analyzer.

%{
include <stdio.h>
include <ctype.h>

int regs [26] ;
int base;

%start list

%token DIGIT LETTER

%left 'I'
%left '&'
%left '+' '- ,
%left '* ' , /' '%'
%left UMINUS /* supplies precedence for unary minus */

%% /* beginning of rules section */

list /* empty */
list stat '\n'
list error '\n'

{ yyerrok; }

stat expr
{ printf("%d\n". $1); }

LETTER '=' expr
{ regs [$1] = $3; }

38 Yacc: Yet Another Compiler-Compiler

expr ' (' expr ,) ,
{ $$ $2; }

expr '+' expr
{ $$ $1 + $3; }

expr '- , expr
{ $$ $1 - $3; }

expr '*' expr
{ $$ $1 * $3; }

expr ' /' expr
{ $$ $1 / $3; }

expr '%' expr
{ $$ $1 % $3; }

expr '&' expr
{ $$ $1 & $3; }

expr 'I' expr
{ $$ $1 I $3; }

'- , expr %prec UMINUS
{ $$ - $2; }

LETTER
{ $$ regs[$l] ; }

number

number DIGIT
{ $$ = $1; base ($1==0) ? 8 10;

number DIGIT
{ $$ = base * $1 + $2; }

%% /* start of programs */

yylexO { /* lexical analysis routine */
/* returns LETTER for a lower case letter. yylval = 0

through 25 */
/* return DIGIT for a digit. yylval = 0 through 9 */
/* all other characters are returned immediately */

int c;

while((c=getchar(»

/* c is now nonblank */

if(islower(c {

if(isdigit(c)

yylval
return
}
{

{ /* skip blanks */ }

c - 'a';
LETTER);

yylval = c '0';
return (DIGIT);

}

Yacc: Yet Another Compiler-Compiler 39

return (c);
}

}

Appendix B: Yacc Input Syntax
This Appendix has a description of the Yacc input syntax, as a Yacc specification. Context
dependencies, etc., are not considered. Ironically, the Yacc input specification language is most
naturally specified as an LR(2) grammar; the sticky part comes when an identifier is seen in a
rule, immediately following an action. If this identifier is followed by a colon, it is the start of the
next rule; otherwise it is a continuation of the current rule, which just happens to have an action
embedded in it. As implemented, the lexical analyzer looks ahead after seeing an identifier, and
decide whether the next token (skipping blanks, newlines, comments, etc.) is a colon. If so,
it returns the token C_IDENTIFIER. Otherwise, it returns IDENTIFIER. Literals (quoted strings)
are also returned as IDENTIFIERS, but never as part of C_IDENTIFIERs.

/* grammar for the input to Yacc */

/* basic entities
%token IDENTIFIER /*
%token C_IDENTIFIER /*

colon */
%token NUMBER /*

*/
includes identifiers
identifier (but not

[0-9] + */

and literals */
literal) followed by

/* reserved words: ~type => TYPE, %left => LEFT, etc. */

%token LEFT RIGHT NONASSOC TOKEN PREC TYPE START UNION

%token MARK
%token LCURL
%token RCURL

/* the %% mark */
/* the %{ mark */
/* the %} mark */

/* ascii character literals stand for themselves */

%start spec

spec

tail

defs MARK rules tail

MARK {
/* empty:

In this action, eat up the rest of the file }
the second MARK is optional */

40 Yacc: Yet Another Compiler-Compiler

defs

def

rword

tag

nlist

nmno
%type */

rules

rule

rbody

act

/* empty */
defs def

START IDENTIFIER
UNION { Copy union definition to output }
LCURL { Copy C code to output file } RCURL
ndefs rword tag nlist

TOKEN
LEFT
RIGHT
NONASSOC
TYPE

/* empty: union tag is optional */
'<' IDENTIFIER '>'

nmno
nlist nmno
nlist nmno

IDENTIFIER /* NOTE: literal illegal with

IDENTIFIER NUMBER /* NOTE: illegal with %type */

/* rules section */

C_IDENTIFIER rbody prec
rules rule

C_IDENTIFIER rbody prec
, I' rbody prec

/* empty */
rbody IDENTIFIER
rbody act

'{' { Copy action, translate $$, etc. } '}'

Yacc: Yet Another Compiler-Compiler 41

prec j* empty * j
PREC IDENTIFIER
PREC IDENTIFIER act
prec ';'

Appendix C: An Advanced Example
This Appendix gives an example of a grammar using some of the advanced features discussed in
Section 10. The desk calculator example in Appendix A is modified to provide a desk calculator
that does floating point interval arithmetic. The calculator understands floating point constants,
the arithmetic operations +, -, *, j, unary -, and = (assignment), and has 26 floating point
variables, "a" through "z". Moreover, it also understands intervals, written

(x , y)

where x is less than or equal to y. There are 26 interval valued variables "A" through "2" that
may also be used. The usage is similar to that in Appendix A; assignments return no value, and
print nothing, while expressions print the (floating or interval) value.

This example explores a number of interesting features of Yacc and C. Intervals are represented
by a structure, consisting of the left and right endpoint values, stored as double's. This structure
is given a type name, INTERVAL, by using typedef. The Yacc value stack can also contain
floating point scalars, and integers (used to index into the arrays holding the variable values).
Notice that this entire strategy depends strongly on being able to assign structures and unions
in C. In fact, many of the actions call functions that return structures as well.

It is also worth noting the use of YYERROR to handle error conditions: division by an inter­
val containing 0, and an interval presented in the wrong order. In effect, the error recovery
mechanism of Yacc is used to throwaway the rest of the offending line.

42 Yacc: Yet Another Compiler-Compiler

In addition to the mIXIng of types on the value stack, this grammar also demonstrates an
interesting use of syntax to keep track of the type (e.g. scalar or interval) of intermediate
expressions. Note that a scalar can be automatically promoted to an interval if the context
demands an interval value. This causes a large number of conflicts when the grammar is run
through Yacc: 18 Shift/Reduce and 26 Reduce/Reduce. The problem can be seen by looking
at the two input lines:

2.5 + (3.5 - 4.

and

2.5 + (3.5, 4.)

Notice that the 2.5 is to be used in an interval valued expression in the second example, but
this fact is not known until the "," is read; by this time, 2.5 is finished, and the parser cannot
go back and change its mind. More generally, it might be necessary to look ahead an arbitrary
number of tokens to decide whether to convert a scalar to an interval. This problem is evaded
by having two rules for each binary interval valued operator: one when the left operand is a
scalar, and one when the left operand is an interval. In the second case, the right operand must
be an interval, so the conversion will be applied automatically. Despite this evasion, there are
still many cases where the conversion may be applied or not, leading to the above conflicts.
They are resolved by listing the rules that yield scalars first in the specification file; in this way,
the conflicts will be resolved in the direction of keeping scalar valued expressions scalar valued
until they are forced to become intervals.

This way of handling multiple types is very instructive, but not very general. If there were
many kinds of expression types, instead of just two, the number of rules needed would increase
dramatically, and the conflicts even more dramatically. Thus, while this example is instructive,
it is better practice in a more normal programming language environment to keep the type
information as part of the value, and not as part of the grammar.

Finally, a word about the lexical analysis. The only unusual feature is the treatment of floating
point constants. The C library routine atof is used to do the actual conversion from a character
string to a double precision value. If the lexical analyzer detects an error, it responds by returning
a token that is illegal in the grammar, provoking a syntax error in the parser, and thence error
recovery.

Yacc: Yet Another Compiler-Compiler 43

%{

include <stdio.h>
include <ctype.h>

typedef struct interval

INTERVAL VDlulO. vdivO;

double atof 0 ;

double dreg[26];
INTERVAL vreg[26];

%}

%start

1.union

lines

{
int ivaI;
double dval;
INTERVAL vval;
}

{
double 10. hi;
} INTERVAL;

%token <ivaI> DREG VREG /* indices into dreg. vreg

%token

%type

%type

%left
%left
%left

lines

line

<dval> CONST /* floating pOint constant

<dval> dexp /* expression */

<vval> vexp /* interval expression */

/* precedence information about the operators

'+' '-'
'*' '/'
UMINUS /* precedence for unary minus */

/* empty */
lines line

dexp '\n'
{ printf("%15.8f\n". $1);}

*/

44 Yacc: Yet Another Compiler-Compiler

arrays */

*/

vexp '\n'
{ printf("(%15.8f, %15.8f)\n", $1.

10, $1.hi) ; }

I DREG '=' deXp '\n'
{ dreg [$1] $3; }

VREG '=' vexp '\n'
{ vreg [$1] $3; }

error '\n'
{ yyerrok; }

dexp CONST
DREG

{ $$ dreg[$1] ; }
dexp '+' dexp

{ $$ $1 + $3; }

dexp '- , dexp
{ $$ $1 - $3; }

dexp '*' dexp
{ $$ $1 * $3; }

dexp 'f' dexp
{ $$ $1 f $3; }

, -' dexp %prec UMlNUS
{ $$ - $2; }

, (, dexp ') ,
{ $$ $2; }

vexp dexp
{ $$.hi $$.10 $1; }

, (' dexp , , dexp ') ,
{

$$.10 = $2;
$$.hi = $4;
if($$.10 > $$.hi){

printf("interval out of order
\n");

YYERROR;
}

}

VREG
{ $$ = vreg[$1] ; }

vexp '+' vexp
{ $$.hi $1.hi + $3.hi;

$$.10 $1.10 + $3.10; }

dexp '+' vexp
{ $$.hi $1 + $3.hi;

$$.10 $1 + $3.10; }
vexp '- , vexp

{ $$.hi $1.hi - $3.10;

Yacc: Yet Another Compiler-Compiler 45

$$.10 $1.10 - $3.hi; }

dexp '- , vexp
{ $$.hi $1 - $3.10;

$$.10 $1 - $3.hi; }

vexp '*' vexp
{ $$ vmul($1.10, $l.hi, $3) ; }

dexp '*' vexp
{ $$ vmul($1, $1, $3) ; }

vexp , /' vexp
{ if(dcheck($3)) YYERROR;

$$ = vdiv($1.10, $l.hi, $3) ; }

dexp , /' vexp
{ if(dcheck($3)) YYERROR;

$$ = vdiv($1, $1, $3) ; }
'- , vexp Xprec UMlNUS

{ $$.hi = -$2.10; $$.10 = -$2.hi; }
, (, vexp ,) ,

{ $$ = $2; }

xx
define BSZ 50 /* buffer size for floating point numbers */

/* lexical analysis */

yylexO{
register c;

while ((c=getchar(»){ /* skip over blanks */ }

if(isupper(c)){

yylval.ival c - 'A' ;
return (VREG) ;
}

if(islower(c)){
yylval.ival c - 'a' ;
return (DREG) ;
}

if (isdigit(c) II c=='. '){
/* gobble up digits, pOints, exponents */

char buf[BSZ+1] , *cp = buf;
int dot = 0, exp = O· ,

fore (cp-buf) <BSZ ++cp,c=getchar()){

*cp = c;
if(isdigit(c) continue;

46 Yacc: Yet Another Compiler-Compiler

d

INTERVAL

*/

if(c){

if(c == 'e'){

if(dot++ I I exp) return('.');
/* will cause syntax error */
continue;
}

if(exp++ return ('e');
/* will cause syntax error */
continue;
}

/* end of number */
break;
}

*cp = '\0';
if((cp-buf) >= BSZ) printf("constant too long: truncated\n");
else ungetc(c. stdin); /* push back last char read

yylval.dval atof(buf);
return(CONST);
}

return (c);
}

hilo(a. b. c. d) double a.
/* returns the smallest interval

/* used
INTERVAL

if(a>b
else {

if(c>d

else

return (
}

by *. / routines
v· .

{ v.hi
v.hi b;

a;
v.lo

{
if (c>v.hi
if (d<v.lo
}
{
if (d>v.hi
if (c<v.lo
}

v) ;

*/

v.lo
= a;

v.hi
v.lo

v.hi
v.lo

b. c. d; {
containing a. b. c. and

b; }
}

c;
d;

d;
c;

INTERVAL vmul(· a. b. v) double a. b; INTERVAL v; {
return (hilo(a*v.hi. a*v.lo. b*v.hi. b*v.lo);
}

dcheck(v) INTERVAL v; {

Yacc: Yet Another Compiler-Compiler 47

if(v.hi >= O. &&
printf(
return (
}

v.lo <= O.){
"divisor interval
1);

contains O.\n"

return (0);
}

INTERVAL vdiv(
return (
}

a, b,
hilo(

v) double a,
a/v.hi, a/v.lo,

b; INTERVAL v;
b/v.hi, b/v.lo

Appendix D: Old Features Supported
but Not Encouraged

{
) ;

) ;

This Appendix mentions synonyms and features which are supported for historical continuity,
but, for various reasons, are not encouraged.

1. Literals may also be delimited by double quotes ''''''.

2. Literals may be more than one character long. If all the characters are alphabetic, numeric,
or _, the type number of the literal is defined, just as if the literal did not have the quotes
around it. Otherwise, it is difficult to find the value for such literals.

The use of multi-character literals is likely to mislead those unfamiliar with Yacc, since it
suggests that Yacc is doing a job which must be actually done by the lexical analyzer.

3. Most places where % is legal, backslash "\" may be used. In particular, \ \ is the same as
%%, \left the same as %left, etc.

4. There are a number of other synonyms:

%< is the same as %left
%> is the same as %right
%binary and %2 are the same as %nonassoc
%0 and %term are the same as %token
%= is the same as %prec

5. Actions may also have the form

={ ... }

and the curly braces can be dropped if the action is a single C statement.

6. C code between %{ and %} used to be permitted at the head of the rules section, as well
as in the declaration section.

48 Yacc: Yet Another Compiler-Compiler

Index

a
accept action ... 15
accept and error, simulating in actions. .. 33
accessing values enclosed in rules .. 34
action defined ... 8
actions, user-supplied ... 8-10
ambiguity 18-21
ambiguity; disambiguating rules ... 25
arithmetic operators ... 23, 24
association, left/right ... 18

b
binary operators ... 23

d
disambiguating rules .. 25

e
endmarker .. 7
environment, yacc .. 28-29
error and accept, simulating in actions. .. 33
error detection, input .. 3
error handling ... 28, 29
error used as token name ... 11
example, advanced grammar .. 42
example yacc specification ... 38

9
grammar rules ... 2

h
handling shift actions ... 14

Index 49

•
I

input syntax, yacc ... 40
interior actions, handling of ... 9

I
left-hand side of grammar rules repeated .. 6
left/right association 18
lexical analysis ... 11-12
lexical analyzer .. 2
literal .. 6
literal character, token number for ... 12
literal characters treated as tokens .. 3

n
NULL character not allowed in grammar rules 6

o
obsolete features supported .. 48

p
parser operation 13-17
parser rules processing described .. 16
precedence .. 23-25
preparation of grammar rules .. 5-7

reduce parser action
right/left association

50 Index

r
.. 13

18

5
shift parser action .. 13
simulating accept and error in actions 33
specification file structure ... 5
specifications:

input style ... 30
left recursion ... 31
lexical tie-ins ... 32
reserved words 33

start symbol ... 7
syntax, yacc input ... 40

t
token names declared .. 5
token number .. 11
token number for literal characters ... 12
tokens defined ... 2

u
unary operators .. 23, 24
unELSEd IF ... 20-21
user-supplied actions .. 8-10

v
-v option when yacc is invoked .. 15, 20
value types, arbitrary, support for .. 35
values enclosed in rules, accessing ... 34

y
yacc environment ... 28-29
yacc input syntax .. 40
yacc specification example ... 38

Index 51

Table of Contents
The ADB Debugger

Introduction .. 1
Invocation ... " 1

Command Format ... '. .. 2
Displaying Information .. 3
Debugging C Programs ... 6

Debugging a Core Image .. 6
Setting Breakpoints .. 9
Advanced Breakpoint Usage .. 14
Other Breakpoint Facilities. .. 16
Maps .. 17
Variables and Registers 20
Formatted Dumps .. 21
Patching .. 25
Anomalies .. 26
Command Summary .. 27

Formatted Printing. .. 27
Breakpoint and Program Control .. 27
Miscellaneous Printing .. 27
Calling the Shell ... 28
Assignment to Variables. .. 28

Format Summary .. 28
Expression Summary .. 29

Expression Components. .. 29
Dyadic Operators .. 29
Monadic Operators 29

The ADB Debugger
Introduction
ADB is a debugging program that is available on HP-UX. It provides capabilities to look at "core"
files resulting from aborted programs, print output in a variety of formats, patch files, and run
programs with embedded breakpoints. This document provides examples of the more useful
features of ADB.

Invocation
ADB is invoked as:

adb objfile corefile

where obj file is an executable HP-UX file and corefile is a core image file. Many times this
will look like:

adb a.out core

or more simply:

adb

where the defaults are a. out and core respectively. The filename minus (-) means "ignore this
argument," as in:

adb - core

The objfile can be written to if adb is invoked with the -w flag as in:

adb -w a.out -

ADB catches signals, so a user cannot use a quit signal to exit from ADB. The request $q or $Q
(or I CTRL ~[QJ) must be used to exit from ADB.

The ADB Debugger 1

Command Format
The general form of a request is:

[address] [,count] [command] [modifier]

ADB maintains a current address, called dot, similar· in function to the current pointer in the
HP-UX editor. When address is entered, dot is set to that location. The command is then
executed count times.

Address and count are represented by expressions. Expressions are made up from decimal,
octal, and hexadecimal integers, and symbols from the program under test. These may be
combined with the operators +, -, *, % (integer division), & (bitwise and), I (bitwise inclusive or),
(round up to the next multiple), and - (not). (All arithmetic within ADB is 32 bits.) When
typing a symbolic address for a C program, the user can type name or _name; ADB will recognize
both forms. The default base for integer input is initialized to hexadecimal, but can be changed.

The following table illustrates some general ADB commands and meanings:

? Print contents from a. out file
/ Print contents from core file

Print value of "dot"
Breakpoint control

$ Miscellaneous requests
Request separator
Escape to shell

I CTRL ~[QJ terminates execution of any ADB command.

2 The ADB Debugger

Displaying Information
ADB has requests for examining locations in either objfile or corefile. The '7 request examines
the contents of objfile, the / request examines the corefile.

Following the '7 or / command the user specifies a format.

The following are some commonly used format letters.

c one byte as a character
x two bytes in hexadecimal
X four bytes in hexadecimal
d two bytes in decimal
F eight bytes in double floating point
i MC68000 instruction
s a null terminated character string
a print in symbolic form
n print a newline
r print a blank space

backup dot

A command to print the first hexadecimal element of an array of long integers named ints in
C would look like:

ints/X

This instruction would set the value of dot to the symbol table value of _ints. It would also set
the value of the dot increment to four. The dot increment is the number of bytes printed by the
format.

Let us say that we wanted to print the first four bytes as a hexadecimal number and the next
four as a decimal one. We could do this by:

ints/XD

In this case, dot would still be set to _ints and the dot increment would be eight bytes. The dot
increment is the value which is used by the newline command. Newline is a special command
which repeats the previous command. It does not always have meaning. In this context, it means
to repeat the previous command using a count of one and an address of dot plus dot increment.
In this case, newline would set dot to ints+Ox8 and type the two long integers it found there,
the first in hex and the second in decimal. The newline command can be repeated as often as
desired and this can be used to scroll through sections of memory.

The ADB Debugger 3

Using the above example to illustrate another point, let us say that we wanted to print the first
four bytes in long hex format and the next four bytes in byte hex format. We could do this by:

ints/X4b

Any format character can be preceded by a decimal repeat character.

The count field can be used to repeat the entire format as many times as desired. In order to
print three lines using the above format we would type

ints.3/X4bn

The n on the end of the format is used to output a carriage return and make the output much
easier to read.

In this case the value of dot will not be _ints. It will rather be _ints+Oxl0. Each time the
format was re-executed dot would have been set to dot plus dot increment. Thus the value of
dot would be the value that dot had at the beginning of the last execution of the format. Dot
increment would be the size of the format: eight bytes. A newline command at this time would
set. dot to ints+Ox18 and print only one repetition of the format, since the count would have
been reset to one.

In order to see what the value of dot is at this point the command

.=a

could be typed. = is a command which can be used to print the value of address in any format.
It is also possible to use this command to convert from one base to another:

Ox32=oxd

This will print the value Ox32 in octal, hexadecimal and decimal.

Complicated formats are remembered by ADB. One format is remembered for each of the? ,
/ and = commands. This means that it is possible to type

Ox64=

4 The ADS Debugger

and have the value Ox64 printed out in octal, hex and decimal. And after that, type

ints/

and have ADS print out four bytes in long hex format and four bytes in byte hex format.

To an observant individual it might seem that the two commands

main,10?i

and

main?10i

would be the same.

There are two differences. The first is that the numbers are in a different base. The repeat
factor can only be a decimal constant, while the count can be an expression and is therefore, by
default, in a hex base.

The second difference is that a newline after the first command would print one line, while a
newline after the second command would print another ten lines.

The ADS Debugger 5

Debugging C Programs
The following examples illustrate various features of ADS. Certain parts of the output (such as
machine addresses) may depend on the hardware being used, as well as how the program was
linked (unshared, shared, or demand loaded).

Debugging a Core Image
Consider the C program in Figure 1. The program is used to illustrate some of the useful
information that can be obtained from a core file. The object of the program is to calculate the
square of the variable ivaI by calling the function sqr with the address of the integer. The error
is that the value of the integer is being passed rather than the address of the integer. Executing
the program produces a core file because of a bus error.

int ints[]=

int ivaI;
main 0
{

Figure 1: C program with pointer bug

{1.2.3.4.5.6.7.8.9.0.
1.2.3.4.5,6.7.8.9.0.
1.2.3.4.5,6.7.8.9.0.
1.2.3.4.5.6.7.8.9.0};

register int i;
for(i=0;i<10;i++)

}

sqr(x)
int *x;
{

}

{ ivaI = ints[i];
sqr(ival);
printf("sqr of %d is %d\n".ints[i] . ivaI) ;

}

ADS is invoked by:

adb

The first debugging request:

$c

6 The ADS Debugger

is used to give a C backtrace through the subroutines called. This request can be used to check
the validity of the parameters passed. As shown in Figure 2 we can see that the value passed
on the stack to the routine sqr is aI, which is not what we are expecting.

Figure 2: ADB output for program of Figure 1

$c
_main+Ox2A:
start+Ox4S:
$r
ps
pc

sp

dO
d!
d2

OxO
OxFE

OxFFFF7DC4

Ox!AE9
Ox53
OxFFCO!

(Ox!)
(Ox!, OxFFFF7DEC)

_sqr+Ox3E: unlk a6

aO Ox!
a! OxFFFF7DEC
a2 OxFFCSBOO4

d3 OxFFC90405 a3 Ox!F5BE
d4 OxFFC9040! a4 Ox!F604
d5 Ox700
d6 OxO
d7 OxO
sqr+Ox34,5?ia
_sqr+Ox34:
_sqr+Ox36:
_sqr+Ox3S:
_sqr+Ox3C:
_sqr+Ox3E:
_sqr+Ox40:
$e

_environ:
_argc_value:
float_soft:
_argv_value:
_ivaI: Ox!
_ints: Ox!
__ iob: OxO
__ ctype:
__ bufendtab:
__ smbuf:
__ lastbuf:
_errno: OxO
__ stdbuf:
__ sobuf:
__ sibuf:
_asm_mhfl:
_end: OxO
_errnet:
_edata: Ox!

a5 Ox!F3S0
a6 OxFFFF7DCS
sp OxFFFF7DC4

move.w
mulu
move.l
move.l
unlk

OxFFFF7DE4
Ox!
OxFFFFOOOO
OxFFFF7DEC

Ox202020
OxO
OxO
Ox39D4

Ox40DC
OxO
OxO
OxO

OxO

(a7)+,dO
d!,dO
OxS (a6) , (aO)
dO, (aO)
a6

The ADB Debugger 7

The next request:

$r

prints out the registers including the program counter and an interpretation of the instruction at
that location. The instruction printed for the pc does not always make sense. This is because
the pc has been advanced and is either pointing at the next instruction, or is left at a point
part way through the instruction that failed. In this case the pc points to the next instruction.
In order to find the instruction that failed we could list the instructions and their offsets by the
following command.

sqr+Ox34.5?ia

This would show us that the instruction that failed was

_sqr+Ox3c:move.l dO. (aO)

This is the first instruction before the value of. the pc. The value printed out for register aO also
indicates that a dereference of its value would fail.

The request:

$e

prints out the values of all external variables at the time the program crashed.

8 The ADS Debugger

Setting Breakpoints
Consider the C program in Figure 3. This program, which changes tabs into blanks, is adapted
from Software Tools by Kernighan and Plauger, pp. 18-27.

Figure 3: C program to decode tabs

#include <stdio.h>
#define MAXLINE 80
#define YES
#define NO

1
o
8 #define TABSP

char
FILE
int
char

mainO
{

input [] "data" ;
*stream;
tabs [MAXLINE] ;
ibuf[BUFSIZ];

int col, *ptab;
char c;

setbuf(stdout,ibuf);
ptab = tabs;
settab(ptab); /*Set initial tab stops */
col = 1;
if«stream = fopen(input,"r")) == NULL) {

printf("%s : not found\\n",input);
exit (8) ;

}

while«c = getc(stream)) != EOF) {
switch(c) {

case '\t': 1* TAB *1
while(tabpos(col) != YES) {

}
}

putchar(' '); 1* put BLANK */
col++ ;

}
break;

case '\n': I*NEWLINE */
put char (, \n ') ;
col = 1;
break;

default:
putchar(c);
col++ ;

The ADS Debugger 9

}

/* Tabpos return YES if col is a tab stop */
tabpos(col)
int col;
{

}

if(col > MAXLINE)
return(YES);

else
return(tabs[col]);

/* Settab - Set initial tab stops */
settab(tabp)
int *tabp;
{

}

int i;

for(i = 0; i<= MAXLINE; i++)
(i%TABSP) ? (tabs[i] NO) (tabs[i] = YES);

We will run this program under the control of ADB (see Figure 4) by:

adb a.out -

Breakpoints are set in the program as:

address:b [request]

The requests:

settab+4:b
fopen+4:b
tabpos+4:b

set breakpoints at the starts of these functions. The above addresses are entered as symbol +4
so that they will appear in any C backtrace since the first instructions of each function is an
instruction that links in the new function. Note that one of the functions is from the C library.

10 The ADB Debugger

Figure 4: ADB output for C program of Figure 3

adb a.out -
executable file a.out
ready
settab+4:b
fopen+4:b
tabpos+4:b
$b
breakpoints
count bkpt
Ox1 _tabpos+Ox4
Ox1 _fopen+Ox4
Ox1 _settab+Ox4
:r
process 19429 created
a.out: running

command

breakpoint _settab+Ox4:
settab+4:d
:c
a.out: running
breakpoint
$c

_fopen+Ox4:

movem.l #<>,-Ox4(a6)

jsr __ findiop

_main+Ox42:
start+Ox48:

_fopen (Ox4000, Ox4006)

tabs/24X
_tabs:

:c
a.out: running
breakpoint

:s
a.out: running
stopped at

<newline>
a.out: running
stopped at

<newline>
a.out: running
stopped at

<newline>
a.out: running
stopped at

<newline>

_main (Ox1, OxFFFF7E04)

Ox1 OxO OxO
OxO OxO OxO
Ox1 OxO OxO
OxO OxO OxO
Ox1 OxO OxO
OxO OxO OxO

_tabpos+Ox4: movem.l #<>,OxO(a6)

_tabpos+OxA: moveq #Ox50,dO

_tabpos+OxC: cmp.l Ox8(a6),dO

_tabpos+Ox10: bge.s _tabpos+Ox16

_tabpos+Ox16: move.l Ox8(a6) ,dO

OxO
OxO
OxO
OxO
OxO
OxO

The ADB Debugger 11

a.out: running
stopped at _tabpos+Ox1A:
<newline>

a.out: running
stopped at _tabpos+Ox1C:

<newline>
a.out: running
stopped at _tabpos+Ox22:

<newline>
a.out: running
stopped at _tabpos+Ox24:

:d*
:c

a.out: running
This is it
process terminated

settab+4:b settab,5?ia
tabpos+4,3:b ibuf/20c
:r

process 19482
a.out: running
settab,5?ia
_settab:
_settab+Ox4:
_settab+OxA:
_settab+OxE:
_settab+Ox12:

created

link
movem.l
clr.l
moveq
cmp.l

_settab+Ox14:
breakpoint _settab+Ox4:

: c
a.out: running
ibuf/20c
_ibuf: This
ibuf/20c
_ibuf: This
ibuf/20c
_ibuf: This
breakpoint _tabpos+Ox4:

$q
process 19482 killed

asl.l #Ox2,dO

add.l #Ox4E50,dO

move.l dO,aO

move.l (aO) ,dO

a6,#OxFFFFFFFC
#<>,-Ox4(a6)
-Ox4(a6)
#Ox50,dO
-Ox4(a6) ,dO

movem.l #<>,-Ox4(a6)

movem.l #<>,OxO(a6)

To print the location of breakpoints type:

$b

The display indicates a count field. A breakpoint is bypassed count-l times before causing a
stop. The command field indicates the ADB requests to be executed each time the breakpoint
is encountered. In our example no command fields are present.

12 The ADB Debugger

By displaying the original instructions at the function settab we see that the breakpoint is set
after the instruction to save the registers on the stack. We can display the instructions using the
ADB request:

settab.5?ia

This request displays five instructions starting at settab with the addresses of each location
displayed.

To run the program simply type:

:r

To delete a breakpoint, for instance the entry to the function settab, type:

settab+4:d

To continue execution of the program from the breakpoint type:

:c

Once the program has stopped (in this case at the breakpoint for fopen), ADB requests can be
used to display the contents of memory. For example:

$c

to display a stack trace, or:

tabs.3/8X

to print three lines of 8 locations each from the array called tabs. The format X is used since
integers are four bytes on the MC68000. By this time (at location fopen) in the C program,
settab has been called and should have set a one in every eighth location of tabs.

The ADB Debugger 13

Advanced Breakpoint Usage
When we continue the program with:

:c

we hit our first breakpoint at tabpos since there is a tab following the "This" word of the data.
We can execute one instruction by

:s

and can single step again by hitting "carriage return". Doing this we can quickly single step
through tabpos and get some confidence that it is working. We can look at twenty characters
of the buffer of characters by typing:

>buf/20c

Several breakpoints of tabpos will occur until the program has changed the tab into equivalent
blanks. Since we feel that tabpos is wOJ;king, we can remove all the breakpoints by:

If the program is continued with:

:c

it resumes normal execution and continues to completion after ADB prints the message

a.out: running

It is possible to add a list of commands we wish to execute as part of a breakpoint. By way of
example let us reset the breakpoint at settab and display the instructions located there when
we reach the breakpoint. This is accomplished by:

settab+4:b settab.5?ia

It is also possible to execute the ADB requests for each occurrence of the breakpoint but only
stop after the third occurrence by typing:

tabpos+4.3:b ibuf/20c

This request will print twenty character from the buffer of characters at each occurrence of the
breakpoint.

14 The ADB Debugger

If we wished to print the buffer every time we passed the breakpoint without actually stopping
there we could type

tabpos+4,-1:b ibuf/20c

A breakpoint can be overwritten without first deleting the old breakpoint. For example:

settab+4:b settab,5?ia;ptab/o

could be entered after typing the above requests. The semicolon is used to separate multiple
ADB requests on a single line.

Now the display of breakpoints:

$b

shows the above request for the settab breakpoint. When the breakpoint at settab is encoun­
tered the ADB requests are executed.

NOTE

Setting a breakpoint causes the value of dot to be changed; executing
the program under ADB does not change dot. Therefore:

settab+4:b . ,5?ia
fopen+4:b

will print the last thing dot was set to (in the example f open) not the
current location (settab) at which the program is executing.

The HP-UX· quit and interrupt signals act on ADB itself rather than on the program being
debugged. If such a signal occurs then the program being debugged is stopped and control is
returned to ADB. The signal is saved by ADB and is passed· on to the test program if:

:c

is typed. This can be useful when testing interrupt handling routines. The signal is not passed
on to the test program if:

:c 0

is typed.

The ADB Debugger 15

Other Breakpoint Facilities
Arguments and change of standard input and output are passed to a program as:

:r argl arg2 ... <infile> outfile

This request kills any existing program under test and starts the a. out afresh. The process will
run until a breakpoint is reached or until the program completes or crashes.

If it is desired to start the program without running it the command

:e argl arg2 ... <infile> outfile

can be executed. This will start the process, and leave it stopped without executing the first
instruction.

If the program is stopped at a subroutine call it is possible to step around the subroutine by

:8

This sets a temporary breakpoint at the next instruction and continues. This may cause unex­
pected results if : 8 is executed at a branch instruction.

ADB allows a program to be entered at a specific address by typing:

address:r

The count field can be used to skip the first n breakpoints as:

,n:r

The request:

,n:c

may also be used for skipping the first n breakpoints when continuing a program.

A program can be continued at an address different from the breakpoint by:

address:c

16 The ADB Debugger

The program being debugged runs as a separate process and can be killed by:

:k

All of the breakpoints set so far can be deleted by

:d*

A subroutine may be called by

:x address [parameters]

Maps
HP-UX supports several executable file formats. These are used to tell the loader how to load the
program file. A shared text program file is the most common and is generated by a C compiler
invocation such as cc pgm. c. A non-shared text file is produced by a C compiler command of
the form cc -N pgm. c, while a demand-loaded a.out file is produced by a C compiler command
of the form cc -q pgm. c. ADS interprets these different file formats and provides access to the
different segments through the maps. To print the maps type:

$m

In nonshared files, both text (instructions) and data are intermixed. In shared files the instructions
are separated from data and 1* accesses the data part of the a. out file. The 1* request tells
ADS to use the second part of the map in the a. out file. Accessing data in the core file shows
the data after it was modified by the execution of the program. Notice also that the data segment
may have grown during program execution. Figure 5 shows the display of three maps for the
same program linked as nonshared, shared, and demand-loaded, respectively. The b, e, and f
fields are used by ADS to map addresses into file addresses. The f 1 field is the length of the
header at the beginning of the file. The f2 field is the displacement from the beginning of the
file to the data. For a nonshared file with mixed text and data this is the same as the length of
the header; for shared files this is the length of the header plus the size of the text portion.

The ADS Debugger 17

Figure 5: ADB output for maps

$ adb a.out.unshared core.unshared
executable file = a.out.unshared
core file = core.unshared
ready
$m
? map ca.out.unshared'
bl = OxO el = Ox19C fl Ox40
b2 = OxO e2 = Ox19C f2 Ox40
/ map ccore.unshared'
bl = OxO el Oxl000 fl = Ox3000
b2 = OxFFFF5000 e2 = OxFFFF8000 f2 = Ox4000
$v
variables
d = Oxl000
m = Oxl07
s = Ox3000
$q
$ adb a.out.shared core. shared
executable file = a.out.shared
core file = core. shared
ready
$m
? map ca.out.shared'
bl = OxO el = Ox18C fl Ox40
b2 = Oxl000 e2 = Oxl0l0 f2 OxlCC
/ map ccore.shared'
bl = Oxl000 el Ox2000 fl Ox3000
b2 = OxFFFF5000 e2 = OxFFFF8000 f2 Ox4000

$v
variables
b = Oxl000
d = OxlOOO
m = Oxl08
s = Ox3000
t = OxlOOO

$q
$ adb a.out.demand core.demand
executable file = a.out.demand
core file = core.demand
ready
$m
? map ca.out.demand'
bl = OxO el = Ox18C fl
b2 = Oxl000 e2 = Oxl0l0 f2
/ map ccore.demand'
bl Oxl000 el Ox2000 fl
b2 = OxFFFF5000 e2 = OxFFFF8000 f2

18 The ADB Debugger

Oxl000
Ox2000

Ox3000
Ox4000

$v
variables
b = Ox1000
d = Ox1000
m = Ox10B
s = Ox3000
t = Ox1000

$q

The band e fields are the starting and ending locations for a segment. Given an address, A, the
location in the file (either a. out or core) is calculated as:

bl~A~el -+ file address = (A-bl)+f1
b2~A~e2 -+ file address = (A-b2)+f2

The ADB Debugger 19

Variables and Registers
ADB provides a set of variables which are available to the user. A variable is composed of a
single letter or digit. It can be set by a command such as

Ox32>5

which sets the variable 5 to hex 32. It can be used by a command such as

<5=X

which will print the value of the variable 5 in hex format.

Some of these variables are set by ADB itself. These variables are:

o last value printed
b base address of data segment
d length of the data segment
e The entry point
m execution type (Ox107 (nonshared),Ox108 (shared),

or Ox10b (demand loaded))
s length of the stack
t length of the text

These variables are useful to know if the file under examination is an executable or core image
file. ADB reads the header of the core image file to find the values for these variables. If
the second file specified does not seem to be a core file, or if it is missing, the header of the
executable file is used instead.

Variables can be used for such purposes as counting the number of times a routine is called.
Using the example of Figure 3, if we wished to count the number of times the routine tabpos
is called we could do that by typing the sequence

0>5
tabpos+4.-1:b <5+1>5
:r
<5=d

The first command sets the variable 5 to zero. The second command sets a breakpoint -at
tabpos+4. Since the count is -1 the process will never stop there but ADB will execute the
breakpoint command every time the breakpoint is reached. This command will increment the
value of the variable 5 by 1. The : r command will cause the process to run to termination, and
the final command will print the value of the variable.

20 The ADB Debugger

$v can be used to print the values of all non-zero variables.

The values of individual registers can be set and used in the same way as variables. The command

Ox32>dO

will set the value of the register dO to hex 32. The command

<dO=X

will print the value of the register dO in hex format. The command $r will print the value of all
the registers.

Formatted Dumps
It is possible to combine ADB formatting requests to provide elaborate displays. Below are some
examples.

The line:

<b.-l/404-aCn

prints 4 octal words followed by their ASCII interpretation from the data space of the core image
file. Broken down, the various request pieces mean:

<b

<b.-l

The base address of the data segment.

Print from the base address to the end of file. A negative count is used here
and elsewhere to loop indefinitely or until some error condition (like end of file)
is detected.

The format 404 -aen is broken down as follows:

40

ac

n

Print 4 octal locations.

Backup the current address 4 locations (to the original start of the field).

Print 8 consecutive characters using an escape convention; each character in the
range 0 to 037 is printed as <0 followed by the corresponding character in the
range 0140 to 0177. An <0 is printed as <0<0.

Print a newline.

The ADB Debugger 21

The request:

<b.<d/404 A 8Cn

could have been used instead to allow the printing to stop at the end of the data segment «d
provides the data segment size in bytes).

The formatting requests can be combined with ADB's ability to read in a script to produce a
core image dump script. ADB is invoked as:

adb a.out core < dump

to read in a script file, dump, of requests. An example of such a script is:

120$w
4095$s
$v
=3n
$m
=3n1lC Stack Backtrace ll
$C
=3n1lC External Variables"
$e
=3n ll Registers ll
$r
O$s
=3n ll Data Segmentll
<b.-l/8ona

The request 120$w sets the width of the output to 120 characters (normally, the width is 80
characters). ADB attempts to print addresses as:

symbol + offset

The request 4095$s increases the maximum permissible offset to the nearest symbolic address
from 255 (default) to 4095. The request = can be used to print literal strings. Thus, headings
are provided in this dump program with requests of the form:

=3n1lC Stack Backtrace"

that spaces three lines and prints the literal string. The request $v prints all non-zero ADB
variables. The request O$s sets the maximum offset for symbol matches to zero thus suppressing
the printing of symbolic labels in favor of octal values. Note that this is only done for the printing
of the data segment. The request:

<b.-l/8ona

prints a dump from the base of the data segment to the end of file with an octal address field
and eight octal numbers per line.

22 The ADB Debugger

Figure 7 shows the results of some formatting requests on the C program of Figure 6.

Figure 6: Simple C Program That Illustrates

Formatting and Patching

char str1 [] II This is a character string";
int one 1;
int number 456;
long lnum 1234;
float fpt 1.25;
char str2[] II This is the second character string";
mainO
{

one 2' ,
}

Figure 7: ADB Output Showing Fancy Formats

adb a.out.shared -
executable file a.out.shared
ready

<b,-1?8ona
_str1: 052150 064563 020151 071440 060440 061550 060562 060543

_str1+0x10: 072145 071040 071564 071151 067147 0 0 01

_number:
_number: 0 0710 0 02322 037640 0 052150 064563

_str2+0x4: 020151 071440 072150 062440 071545 061557 067144 020143

str2+0x14: 064141 071141 061564 062562 020163 072162 064556 063400
<b,20?404-8Cn
str1: 052150 064563 020151 071440 This is

060440 061550 060562 060543 a charac
072145 071040 071564 071151 ter stri
067147 0 0 01 ng(Q'(Q'(Q'(Q'(Q'(Qa

_number: 0 0710 0 02322 (Q'(Q'(QaH(Q'(Q'(QdR

_fpt: 037640 0 052150 064563 ? (Q'(Q'This
020151 071440 072150 062440 is the
071545 061557 067144 020143 second c
064141 071141 061564 062562 haracter
020163 072162 064556 063400

address not found in a. out file
<b,20?404-8t8Cna

The ADB Debugger 23

_strl : 052150 064563 020151 071440 This is
_strl+0x8: 060440 061550 060562 060543 a charac
_strl+0xl0: 072145 071040 071564 071151 ter stri
_strl+0x18: 067147 0 0 01 ng(Qc(Qc(Qc(Qc(Qc(Qa
_number:
_number: 0 0710 0 02322 (Qc(Qc(QaH(Qc(Qc(QdR
_fpt:
_fpt: 037640 0 052150 064563 ? (Qc(QcThis
_str2+0x4: 020151. 071440 072150 062440 is the
_str2+0xC: 071545 061557 067144 020143 second c
_str2+0x14: 064141 071141 061564 062562 haracter
_str2+0xlC: 020163 072162 064556 063400
address not found in a.out file
<b,a?2b8t-2cn

_strl: Ox54 Ox68 Th
Ox69 Ox73 is
Ox20 Ox69 i
Ox73 Ox20 s
Ox61 Ox20 a
Ox63 Ox68 ch
Ox61 Ox72 ar
Ox61 Ox63 ac
Ox74 Ox65 te
Ox72 Ox20 r

$q

24 The ADB Debugger

Patching
Patching files with ADB is accomplished with the write, w or W, request (which is not like the
ed editor write command). This is often used in conjunction with the locate, I or L request. In
general, the request syntax for 1 and ware similar as follows:

11 value

The request I is used to match on two bytes, L is used for four bytes. The request w is used to
write two bytes, whereas W writes four bytes. The value field in either locate or write requests
is an expression. Therefore, decimal and octal numbers, or character strings are supported.

In order to modify a file, ADB must be called as:

adb -w fi1e1 fi1e2

When called with this option, fi1e1 is created if necessary and opened for both reading and
writing. fi1e2 can be opened for reading but not for writing.

For example, consider the C program shown in Figure 6. We can change the word "This" to
"The " in the executable file for this program, ex7, by using the following requests:

adb -w ex7 -
11 'Th'
1W 'The'

The request 11 starts at dot and stops at the first match of "Th" having set dot to the address
of the location found. Note the use of 1 to write to the a. out file. The form 1* would have
been used for a shared text file.

More frequently the request will be typed as:

11 'Th'; 18

and locates the first occurrence of "Th" and print the entire string. Execution of this ADB
request will set dot to the address of the "Th" characters.

The ADB Debugger 25

As another example of the utility of the patching facility, consider a C program that has an
internal logic flag. The flag could be set by the user through ADB and the program run. For
example:

adb a.out -
:e argl arg2
flag/w 1
:c

The : e request is used to start a. out as a subprocess with arguments argl and arg2. If there
is a subprocess running ADB writes to it rather than to the file so the w request causes flag to
be changed in the memory of the subprocess.

Anomalies
Below is a list of some strange things tha,t users should be aware of.

1. Function calls and arguments are put on the stack by the link instruction. Putting break­
points at the entry point to routines means that the function appears not to have been
called when the breakpoint occurs.

2. If a : S command is executed at a branch instruction, and the branch is taken, the command
will act as a : c command. This is because a breakpoint is set at the next instruction and
if is not reached, the process will not stop.

26 The ADB Debugger

Command Summary

Formatted Printing
? format

/ format

= format

?w expression

/wexpression

?I expression

print from a.out file according to format

print from core file according to format

print the value of dot

write expression into a.out file

write expression into core file

locate expression in a.out file

Breakpoint and Program Control
:b set breakpoint at dot

:c continue running program

:d delete breakpoint

:k kill the program being debugged

:r run a. out file under ADB control

:s single step

Miscellaneous Printing
$b print current breakpoints

$c C stack trace

$e external variables

$f floating registers

$m print ADB segment maps

$q exit from ADB

$r general registers

$s set offset for symbol match

$v print ADB variables

$w set output line width

The ADB Debugger 27

Calling the Shell
call shell to read rest of line

Assignment to Variables
>name assign dot to variable or register name

Format Summary
a the value of dot

b one byte in hexadecimal

c one byte as a character

d two bytes in decimal

f four bytes in floating point

MC68000 instruction

0 two bytes in octa

n print a newline

r print a blank space

5 a null terminated character string

nt move to next n space tab

u two bytes as unsigned integer

x hexadecimal

y date

backup dot

print string

28 The ADB Debugger

Expression Summary

Expression Components
decimal integer

octal integer

hexadecimal

symbols

variables

registers

(expression)

e.g. Od256

e.g. 0277

e.g. Oxff

e.g. flag _main

e.g. <b

e.g. <pc <dO

expression grouping

Dyadic Operators
+ add

subtract

*

%

&

multiply

integer division

bitwise and

bitwise or

round up to the next multiple

Monadic Operators
not

contents of location

integer negate

The ADB Debugger 29

Notes

30 The ADB Debugger

Index

a
adb command .. 1
adb command format ... 2
anomolies .. 26

b
breakpoints:

facilities ... 16-17
setting ... 9-13
using ... 14-15

c
command summary .. 27

d
data formats, display ... 3-5
debugging:

C programs .. 6-8
core image .. 6-8

display array contents 3
display data formats .. 3-5
display requests, information .. 3
dumps, formatted ... 21

e
executable file formats ... 17

f
file patching .. 25
format:

adb command .. 2
data display .. 3-5
executable file .. 17

formatted dumps .. 21

Index 31

i
information display requests ... 3
invoking adb ... 1

m
maps used to access executable file segments 17

p
patching files ... 25

r
registers and variables, use of ... 20

s
scrolling through memory ... 3
setting breakpoints .. 9-13
summary:

command .. 27
expression .. 29
format ... 28

v
variables and registers, use of ... 20

32 Index

Table of Contents
C Debugger (cdb)
Part 1: Introduction

Tutorial Text Conventions .. 1
Overview of cdb 2
Overview of Interprocess Debugging. .. 3
Compiling Programs ... 4
Debugger Command Conventions. .. 6

Notational Conventions .. 6
Variable Name Conventions .. 7
Expression Conventions .. 9
Procedure Call Conventions .. 11

Running cdb .. 12
Example Program .. 14

Part 2: Viewing Commands
File Code Viewing Commands 15
Print Current File, Procedure and Line Number , 15
Change Files and Print First Executable Line .. 16
Print Groups of Lines ... 16
Print Window of Text ... 17
Move Forward/Backward from Current Line. .. 18
Miscellaneous File Viewing Commands .. 19

Stack Viewing Commands '.' .. 20
Trace Stack for Expr Levels 20
Set Viewing Location. .. 21

Data Viewing Commands. .. 22
Print Variable's Value. .. 22
View Non-current Location Variables .. 23
List Command. .. 23
Miscellaneous Data Viewing Commands 24

Display Formats ... 25

Part 3: Job Control Commands
Run/Terminate the Program 27
Terminate Current Child Process .. 28
Continue After Breakpoint/Signal 29
Single Step After Breakpoint .. 30

Part 4: Breakpoint Commands
Set a Breakpoint .. 34
List Breakpoints ... 37
Delete Breakpoints ... 37
Miscellaneous Breakpoint Commands 38

Part 5: Assertion Control Commands and Signal Handling Commands
Assertion Control Commands. .. 41

Create New Assertion .. 41
Modify an Assertion. .. 42
Tracing Program Execution. .. 43
Toggle the State .. 44
Delete All Assertions .. 44

Signal Handling Commands .. 45
Reverse Handling of Signal 46

Part 6: Record, Playback, and Other cdb Commands
Record and Playback Commands .. 49

Miscellaneous Record and Playback Commands .. 52
Other Commands 53

C Debugger (cdb)
Part 1: Introduction
Tutorial Text Conventions
The following conventions are used throughout this tutorial:

• Italics indicate files and HP-UX commands, system calls, and subroutines found in the HP­
UX Reference manual as well as titles of manuals. Italics are also used for symbolic items
either typed by you or displayed by the system as discussed below. Examples include
/usr/lib/nls/american/prog.cat, date(l), and pty(4). The parenthetic number shown for
commands, system calls, and other items found in the HP-UX Reference is a convention
used in that manual.

• Boldface is used when a word is first defined and for general emphasis.

• Computer font indicates a literal typed by you or displayed by the system. A typical
example is:

cdb main.c

Note that when a command or file name is part of a literal, it is shown in computer font
and not italics. However, if the command or file name is symbolic (but not literal), it is
shown in italics as the following example illustrates:

cdb executable-file

In this case you would type in your own executable_file. If the command has optional
arguments, they are designated by square brackets, [], as the example below shows:

[line]p[count]

• Unless otherwise stated, all references such as "see the ptrace(2) entry for more details"
refer to entries in the HP-UX Reference manual. If you cannot find an entry where you
expect it to be, use the HP-UX Reference manual's Permuted Index.

C Debugger (cdb) 1

Overview of cdb
cdb is a symbolic source-level debugger that provides a controlled execution environment for
C, FORTRAN, and Pascal programs. This tool can be used to debug C, FORTRAN, or Pascal
programs without needing to know internals.

The scenario in which you use cdb is: if you have problems in your program, you re-compile the
program and then use cdb to assist in finding and correcting errors.

This tutorial describes the commands needed to use cdb. The tutorial provides a description
of the commands and each command's syntax. There are programming examples in which the
more important commands are used.

There are certain hardware dependencies, symbol table dependencies, diagnostics, warnings, and
bugs associated with cdb. The authoritative reference on these items is the manual page cdb(l)
in the HP-UX Reference. Everything else about cdb is detailed or implied in its pages, along
with a quick reference of all the commands presented in this tutorial.

2 C Debugger (cdb)

Overview of Interprocess Debugging
Both cdb and adb are interprocess debuggers. Interprocess debuggers run separately from the
programs processes being debugged.

In HP-UX, cdb (and adb) interact with the program being debugged through ptrace(2). This
intrinsic allows a parent process read and write memory, and register locations in a child process,
as well as causes the child process to machine-instruction step, continue (free run), and terminate.

The debugger cdb is the parent process and the program being debugged is the child process.
In this document the terms child process, target program, your program, and program being
debugged are synonymous.

C Debugger (cdb) 3

Compiling Programs
The C, FORTRAN, and Pascal compilers emit debugging information when you compile with the
-g option. This debug information is massaged by the assembler (Pascal and FORTRAN bypass
the assembler) and the linked output ends up in the executable program file. cdb needs this
information to be able to debug your program. If you want to use cdb on a particular procedure,
it must be compiled with the -g option. You don't have to compile your entire program with -g

(it's usually easier to do it that way), but as a minimum, the main procedure must be compiled
with -g (otherwise cdb can't debug your program).

cc -g program

Compiling with -g increases the size of your executable file conSiderably (for example, compiling
cdb source with -g leads to a 6x increase). However, the memory requirements will not change
appreciably because the debug data is not loaded into memory.

The objectfile is the executable program file which has had one or more of its component modules
compiled with debug option(s) (for example, -g) turned on. The -g option causes the linker to
append /usr/lib/end.o to your objectfile. This support module /usr/lib/end.o must be included
as the last object file in the list of those linked, except for libraries included with the -I option
of Id(l). The /usr/lib/end.o subroutine contains buffer space used by cdb during command line
procedure calls. An increase of 200 bytes in memory requirements is caused by compiling with
-g. (Some systems automate this; see the cdb(l) "Hardware Dependencies" section.) The default
for objectfile is a.out.

The corefile is a core image from a failed execution of objectfile. The default for corefile is core.
(Note: the Series 500 does not support corefiles.)

The options available are:

-d dir

-r file

-p file

names an alternate directory where source files are located. They are searched
in the order given. If a source file is not found in any alternate directory, the
current directory is searched last.

names a record file which is invoked immediately (for overwrite, not for append).
See the section below entitled "Record and Playback Commands" for a description
of this feature.

names a playback file which is invoked immediately. See the section below entitled
"Record and Playback Commands" for a description of this feature.

4 C Debugger (cdb)

-s num sets the size of the string cache to num bytes. The default num depends on the
symbol table format used. The option is not available for all formats. The string
cache holds data read from objectfile.

There can only be one object file and one corefile per debugging session (activation of the de­
bugger). The program (objectfile) is not invoked as a child process until you give an appropriate
command (see the "Job Control Commands" chapter). The same program may be restarted, as
different child processes, many times during one debugging session.

This debugger is a complex, interactive tool with many synergistic and combinatorial features.
What you can do with it is often limited only by your imagination. Remember, however, that
the debugger is only a window into the world consisting mostly of the program being debugged
and the system it runs on. If something puzzling happens, you may need to consult a manual
which describes the program or the system, in order to understand the behavior.

C Debugger (cdb) 5

Debugger Command Conventions
The debugger remembers the current file, current procedure, current line, and current data
location. They are a function of what you have been viewing (not necessarily executing) most
recently. Many commands use these current locations as defaults; many commands set them as
a side effect. It is important to keep this in mind when deciding what a command does in any
particular situation.

For example, if you stop in procedure asub, then view procedure bsub, then ask for the value
of local variable i, the debugger assumes that the variable belongs to procedure bsub.

Notational Conventions
Most commands are of the form [modifier] command-letter [options]. Numeric modifiers before
and after commands can be any numeric expression. They need not be just simple numbers. A
blank is required before any numeric option. Multiple commands on one line must be separated
by;.

These are common modifiers and other special notations:

(A I B I C)

[A I B I c]

file

proc

var

number

expr

depth

format

6 C Debugger (cd b)

Anyone of A or B or C is required.

Anyone of A or B or C is optional.

A file name.

A procedure (or function, or subroutine) name.

A variable name.

A specific, constant number (e.g. 9, not 4+5). Floating point (real) numbers
may be used any place a constant is allowed.

Any expression, but with limitations stated below.

A stack depth, as printed by the t command. The top procedure is at a
depth of zero. A negative depth acts like a depth of zero. Stack depth
usually means exactly at the specified depth, not the first instance at
or above the specified depth.

A style for printing data. See the "Viewing Commands" chapter for details.

commands A series of debugger commands, separated by;, entered on the command
line, or saved with a breakpoint or assertion. Semicolons are ignored (as
commands) so they can be freely used as command separators. Commands
may be grouped with {} for the a, b, if, and! commands. In all other
cases, commands inside {} are ignored.

Variable Name Conventions
Variables are referenced exactly as they are named in your source file(s). Case sensitivity is
controlled by the Z command. Be careful with one letter variable names, since they can be
confused with commands. If an expression begins with a variable that might be mistaken for a
command, just enclose the expression in 0 (e.g. (k)) , or eliminate any white space between the
variable and the first operator (use k= 9 instead of k = 9).

If you are interested in the value of some variable var, there are a number of ways of getting it,
depending on where and what it is:

var

proc.var

proc.depth.var

:var

Search the stack for the most recent instance of the current procedure. If
found, see if var is a parameter or local variable of that procedure. If not,
search outward using scoping rules for var.

Search the stack for the most recent instance of proc. If found, see if it
has a parameter or local variable named var, as before.

Use the instance of proc that is at depth depth (exactly), instead of the most
recent instance. This is very useful for debugging recursive procedures
where there are multiple instances on the stack.

Search for a global (not local) variable named var.

Dot is shorthand for the last thing you viewed (see the "Data Viewing
Commands" section). It has the same size it did when you last viewed it.
For example, if you look at a long as a char, then. is considered to be
one byte long. This is useful for treating things in unconventional ways,
such as changing the second highest byte of a long without changing the
rest of the long. Dot may be treated like any other variable.

C Debugger (cdb) 7

NOTE

The . (dot) is the name of this magic location. If you use it, it is de­
referenced like any other name. If you want the address of something
that is, say, 30 bytes farther on in memory, do not use .+30. That
would take the contents of dot and add 30 to it. Instead, say &.+30,
which adds 30 to the address of dot.

Special variables are names for things that are not normally directly accessible. Special variables
include:

$var

$pc, $fp, $sp, $rO, etc.

$result

$signal

$lang

$line

$malloc

8 C Debugger (cdb)

The debugger has room in its own address space for a num­
ber of user-created special variables. They are all of type
long, and do not take on the type of any expression they
are assigned to. Names are defined when they are first
seen. For example, saying $xyz = 3*4 creates special sym­
bol $xyz, and assigns to it the value 12. Special variables
may be used just like any other variables.

These are the names of the program counter, the frame
pointer, the stack pointer, the registers, etc. To find out
which names are available on your system, use the I r (list
registers) command. All registers act as type integer.

This is used to reference the return value from the last pro­
cedure exit. Where possible, it takes on the type of the
procedure. $short and $long are available as alternate ways
of looking at $result.

This lets you see and modify the current child process signal
number.

This lets you see and modify the current language (0 for C,
1 for FORTRAN, or 2 for Pascal).

This lets you see and modify the current source line number,
which can be set with a number of different commands.

This lets you see the current amount of memory (bytes)
allocated at run-time for use by the debugger itself.

$cBad This lets you see and modify the number of machine instruc­
tions the debugger will step while in a non-debuggable proce­
dure before setting an up-level breakpoint and free-running
to it. Setting it to a small value can improve debugger per­
formance, at the risk of taking off free-running after missing
the up-level break for some reason.

To see all the special variables, including the predefined ones, use the I s (list specials) command.

You can also look up code addresses with:

proc#[ine

which searches for the given procedure name and line number (which must be an executable
line within proc) and uses the code address of that line. Just referring to a procedure proc by
name uses the code address of the entry point to that procedure.

Expression Conventions
Every expression has a value, even simple assignment statements, as in C. Naked expression
values (those which aren't command modifiers) are always printed unless the next token is ;
(command separator) or} (command block terminator). Thus breakpoint and assertion commands
(see the appropriate sections below) are normally silent. To force an expression result to be
printed, follow the expression with In (print in normal format; see below).

Integer constants may begin with 0 for octal or Ox or OX for hexadecimal. They are int if they
fit in two bytes, long otherwise. If followed immediately by [or L, they are forced to be of type
long (this is useful on systems where int is two bytes).

Floating point constants must be of the form:

digits.digits[e I E I diD I L I 1 [+I-]digits]

for example, 1. 0, 3. 14e8, or 26. 62D-31. One or more leading digits is required to avoid
confusion with. (dot). A decimal point and one or more following digits is required to avoid
confusion for some command formats. If the exponent doesn't exactly fit the pattern shown,
it is not taken as part of the number, but as separate token(s). The d and D exponent forms
are allowed for compatibility with FORTRAN. The [and L exponent forms are allowed for
compatibility with Pascal. However, all floating point constants are taken as doubles, regardless.

C Debugger (cdb) 9

Character constants must be entered in single quotes (for example, 'n') and are treated as
integers. C string constants must be entered in double quotes (for example, "Hello World") and
are treated like char * (Le., pointer to char). FORTRAN and Pascal strings may be enclosed in
either single quotes " or double quotes "". Character and string constants may contain the
standard backslashed escapes understood by the C compiler and the echo(1) command, including
\b, V, \n, \r, \t, \ \, \', and \nnn. However, \ I RETURN I is not supported, in quotes or at the
end of a command line.

Expressions are composed of any combination of variables, constants, and C operators. If the
debugger is invoked as cdb, the C operator sizeoJ is also available. If the debugger is invoked as
Jdb, FORTRAN operators are also available and FORTRAN meanings take precedence where
there is a conflict. The same is true for Pascal if the debugger is invoked as pdb.

If there is no active child process and no corefile, you can only evaluate expressions containing
constants.

Expressions approximately follow the C rules of promotion, e.g. char, short, and int become
long, and float becomes double. If either operand is a double, floating point math is used. If
either operand is unsigned, unsigned math is used. Otherwise, normal (integer) math is used.
Results are then cast to proper destination types for assignments.

If a floating point number is used with an operator that doesn't normally permit it, the number
is cast to long and used that way. For example, the C binary operator N (bit invert) applied to
the constant 3.14159 is the same as -3.

Note that = means assign except in Pascal. In Pascal, = is a comparison operator; use := for
assignments. For FORTRAN use == or .EQ .. For example, if you invoke the debugger as cdb,
then set $lang = 2 (Pascal), you must say $lang : = 0 to return to C.

Use / / for division, instead of /, to distinguish from display formatting (see the " Data Viewing
Commands" section).

The special unary operator $in (not to be confused with debugger local variables) evaluates to
1 (true) if the operand is an address inside a debuggable procedure and $pc (the current child
process program location) is also in that procedure, else it is 0 (false). For example, $in main is
true if the child process is stopped in main().

If the first expression on a line begins with + or -, use 0 around it to distinguish from the + and
- commands (see the "Data Viewing Commands" section). Parentheses may also be needed to
distinguish an expression from a command it modifies.

10 C Debugger (cdb)

You can attempt to dereference any constant, variable, or expression result using the C •
operator. If the address is invalid, an error is given.

Whenever an array variable is referenced without giving all its subscripts, the result is the address
of the lowest element referenced. For example, consider an array declared as x[5] [6] [7] in
C, x (5.6.7) in FORTRAN, or x [1. .5.2 .. 6.3 .. 7] in Pascal. Referencing it simply as x is the
same as just x in C, the address of xCi.l.l) in FORTRAN, or the address of x[i.2.3] in
Pascal. Referencing it as x[4] is the same as" (x[4] [0] [0]) in C, the address of x(1.1.4) in
FORTRAN, or the address of x[4.2.3] in Pascal.

If a not-fully-qualified array reference appears on the left side of an assignment, the value of the
right-hand expression is stored into the element at the address specified.

String constants are stored in a buffer in the file /usr/lib/end.o. The debugger starts storing
strings at the beginning of this buffer, and moves along as more assignments are made. If the
debugger reaches the end of the buffer, it goes back and reuses it from the beginning. In general
this doesn't cause any problems. However, if you use very long strings, or if you assign a string
constant to a global pointer, problems could arise.

Procedure Call Conventions
Procedures may be invoked from the command line, even within expressions. For example:

xyz = $abc * (3 + def (ghi - 1. jkl. "Hi Mom"»

calls procedure def when its value is needed in the expression.

Any breakpoints encountered during command line procedure invocation are handled as usual.
However, the debugger has only one active command line at a time. If it stops in a called
procedure for any reason, the remainder (if any) of the old command line is tossed, with notice
given.

If you attempt to call a procedure when there is no active child process, one is started for you
as if you gave a single-step command first. Unfortunately, this means that the data in corefile (if
any) may disappear or be reinitialized.

If you send signal SIGINT (e.g., hit the I BREAK I key) while in a called procedure, the debugger
aborts the procedure call and returns to the previous stopping point (the start of the main
program for a new process).

C Debugger (cdb) 11

You can call any procedure that is in your objectfile, even if it is not debuggable (was not compiled
with the -g option). For example, assume that you reference printf() in your program, so the
code for it is in your objectfile. Then you can enter on the command line:

printf (IIThis works! %d %c\n". 9. '1');

If you wonder what procedures are available, do a list labels command (II). If you want to have
some library routines available for debugging, but they aren't referenced anywhere in your code
(so they aren't linked), rei ink your program with the -u option to force their inclusion.

Note that procedure name _end_ is declared in end.c.

Running cdb
If an a.out file exists, then you invoke cdb by typing:

cdb

Otherwise, you need to specify an executable file as shown below.

To invoke the debugger on your C program, type:

cdb executable-file

Run the debugger. on FORTRAN programs via:

fdb executable_file

and on Pascal programs via:

pdb executable-file

/bin/fdb and /bin/pdb are links to /bin/cdb. The cdb debugger does some language-dependent
processing based on how it was invoked (cdb, fdb, or pdb). Examples of this are:

• FORTRAN arrays (column-major storage)

• FORTRAN CHAR* and Pascal string variables

• Pascal PACKED arrays of CHAR

12 C Debugger (cd b)

You may change the current language from within cdb/fdb/pdb with the $lang special variable
(see the "Conventions" section for more details).

Throughout the remainder of this document, cdb will be used as a generic term for cdb/fdb/pdb.

The cdb debugger needs to be able to access the source files for your program. The debugger
assumes they are in the current directory. If they're not, use the -d command line option to
specify their location. For example:

cdb -d srci -d src2 bin/pgm

runs cdb on ./bin/pgm with source in ./srcl and ./src2.

The cdb debugger starts up by displaying file and procedure counts and then the first executable
line of your program. At this point your program has not been loaded into memory.

cdb then prompts for commands with the > character.

C Debugger (cdb) 13

Example Program
The example program used throughout this tutorial is listed below. Almost all the cdb commands
covered in this tutorial will be illustrated using these two files (main.c and sub.c). Type them in
exactly as shown, using an appropriate text editor (e.g., vi). Then compile them both and start
cdb.

For the purposes of this document, the file main.c must contain the main program:

main ()
{

}

long i;
i = 5;
asub(i);

The file sub.c must contain the subroutines:

asub (arg)
long arg;
{

bsub(arg);
}

bsub (myarg)
long myarg;
{

1* do nothing *1
}

To compile these program files, use the C compiler and the -g option as shown in the previous
section "Compiling Programs". Type:

cc -g main.c sub.c

During compilation, two object files main.o and sub.o will be created and placed in the current
directory. You can use the Is! command to check for them. To start the debugger on the default
executable object file a.out type:

cdb a.out

NOTE

All examples in this tutorial were run on a Series 500 computer. Ad­
dresses will differ from those on Series 200 or 300 machines.

14 C Debugger (cdb)

Part 2: Viewing Commands
A user can view the source code statically (before the program has executed) or dynamically
(during execution). The stack and data, on the other hand, are meaningless until the program
is executing and a breakpoint is reached.

File Code Viewing Commands
One must understand the concept of current lines, files, and procedures in order to use cdb. The
cdb debugger interprets everything relative to the current viewing location; this holds particularly
to line numbers and variable names.

Print Current File, Procedure and Line Number
Syntax:

e

Example:
$cdb a.out
Source files: 3
Procedures: 4
main.c: main: 4: i=5;
>e
main.c: main: 4: i=5;

This command prints the line you are presently located at within the file. It shows the current
file, procedure, line number, and source line (main.c: main: 4: i = 5;). Commands that show
the file and procedure with a source line, skip (do not print) any leading white space from the
source line.

C Debugger (cdb) 15

Change Files and Print First Executable Line
Syntax:

e file
e proc

This command places you in the file or procedure designated. Entering a file sets the current
line number to 1. Entering a procedure sets the current file and line to the first executable line
of the procedure. You can enter any file and look at it from cdb; it does not have to be a
program source file.

Example:
>e sub.c
sub.c: 1: asub (arg)
>e asub
sub.c: asub: 4: bsub (arg);

Notice that the second e command places you into the sub.c file at the first executable line of
asubO. To return to main.c simply type:

>e main.c
main.c: 1: maine)

Print Groups of Lines
Syntax:

[line]p [count]

The p command can be used several ways. When p is used alone, the current line is output.
Using p with just line prints the line specified by that number. If a count follows the p, count
lines will be printed starting at line. p followed only by count, prints from the current line forward
count lines. If more than one line is printed, the current line is marked with a = in the leftmost
position.

Example:
>p

1 : main 0
>5p

5: asub(i);
>p2

5: asub(i);
6: }

>2p 3
2: {
3: long i:
4: i = 5;

16 C Debugger (cdb)

Print Window of Text
Syntax:

[line] w [window size]
[line] W [window size]

Instead of using p to print sections of text, sometimes the wand W commands are more useful.
The window commands are used for qUickly scrolling through source files (or any file). These
commands print blocks of text thereby reducing the need to refer to paper listings during a
debugging session. Window commands (w defaults to 11 lines and W defualts to 21 lines) print
the block of text centered around the current line (or any specified line). The line parameter
specifies the current line number. Then window size designates how many lines around the
current line are printed.

You can cause the previous w or W command to be repeated by pressing I RETURN I. This causes
the next successive block of text to be displayed. The cdb debugger remembers the size and
direction of text windowing for the next I RETURN 1 command.

Example:
>e sub.c
sUb.c: 1: asub (arg)
>5 p

5: }
>w

1: asub (arg)
2: long arg;
3: {

4: bsub(arg) ;
5: }

6:
7: bsub (myarg)
8: long myarg;
9: {

10: 1* do nothing *1
11: }

>4 w
1 : asub (arg)
2: long arg;
3: {
4: bsub(arg);
5: }

6:
7: bsub (myarg)
8: long myarg;
9: {

10: 1* do nothing *1
11: }

C Debugger (cdb) 17

>w 5
2: long arg;
3: {
4: bsub(arg);
5: }
6:

>9 w 5
7:
8:
9:

10:
11:

bsub (myarg)
long myarg;
{

1* do nothing *1
}

Move Forward/Backward from Current Line
Syntax:

+[lines]
-[lines]

This command moves the cursor lines forward when you use + and lines backward when you
use the -. The default is 1.

Example:
>- 3

6:
>+ 4

10: I*do nothing*1

The window command and these directional commands can be blended to build the +/- W/w
commands which are useful for changing direction. The -Wand -w commands cause the pre­
ceding block of text to be displayed. While +W and +w cause the following block of text to be
displayed.

18 C Debugger (cdb)

Miscellaneous File Viewing Commands
dir directory

L

line

+w[size]
+ W[S ize]

-w[size]
-W[size]

Add directory to the list of alternate source directories. The effect
is the same as using the -d invocation option. If the file containing
the main procedure does not reside in the current directory, its
directory must be specified with the -d option.

This is a synonym for DE (see the "Set Viewing Location" section).

Print source line number line in the current file.

Print a window of text, of the given or default size, beginning at
the end of the previous window, if the previous command was a
window command, or at the current line otherwise.

Print a window of text, of the given or default size, ending at the
beginning of the previous window, if the previous command was a
window command, otherwise end at the current line.

If after any window command you give a w or W command with no line specified, the debugger
prints the following window of source text; or if the previous window command was -w or -W
the previous window is printed, using the given size (or the default if none). Pressing I RETURN I
after any window command does the same thing, but uses the previous size as well.

/[string] Search forward through the current file, from the line after the current line, for string.

?[string] Search backward for string, from the line before the current line.

Searches wrap around the end or beginning of the file, respectively. If string is not specified,
the previous one is used. Wild cards and regular expressions are not supported; string must
be literal. Case sensitivity is contolled by z; the default is insensitive (see· the section "Other
Commands" for details).

n

N

Repeat the previous / or? command using the same string as
previously.

The same as n, but the search goes in the opposite direction as
specified by the previous / or ? command.

These search commands, I, ?, n, and N work the same as in vi(1).

C Debugger (cdb) 19

Stack Viewing Commands
These commands are only meaningful after the child process stops (e.g., on a breakpoint) because
there is nothing on the stack until the child process is running. The procedure calling chain is
displayed with the t and T commands.

A detailed description for using and setting breakpoints is provided in the "Breakpoint Com­
mands" section. For this example type:

>b (set the breakpoint)
Added:

1: count: 1 asub: 4: bsub(arg);
>r
Starting process 1246: "a.out"

breakpoint at Ox60180006
sub.c: asub: 4: bsub(arg);

Trace Stack for Expr Levels
Syntax:

[depth] t
[depth] T

(run the program)

The t command traces the stack for the first depth (default 20) level and displays the procedures
on the stack and their parameter values. The T supplements this information with local variables
which are also displayed, using the In format (except that arrays and pointers are shown as
addresses, and only the first word of structures is shown).

Example:
>t
o asub (arg = 5)
1 main () [main.c:
2 start +Ox0000001a
3 unknown ()
>T

[sub. c: 4]
5]
(Ox1, Oxc0000030, Oxc0000040)

o
1

asub (arg = 5) [sub.c: 4]
main () [main.c: 5]

i = 5
2 start +Ox0000001a (Ox1, Oxc0000030, Oxc0000040)
3 unknown 0

Non-debuggable procedures are also displayed but their parameters are displayed in hexadecimal.

20 C Debugger (cdb)

Set Viewing Location
Syntax:

[depth]E

The E command sets the current viewing location to the procedure on the stack at depth depth
and prints the current file name, procedure name, and line. The point of suspended execution is
at depth = O. For example, with the above stack trace the command 1E sets the current viewing
line to line 5 in main.c which is the call to asubO.

The E command only sets the viewing location. This means that using E to set the location to
a prior instance of a recursive procedure and then querying the value of variable x will show x
in the most recent instance of the procedure. The proc.depth.var syntax must be used in this
case.

The E command is handy for qUickly looking at the source code for the calling chain (perhaps
to determine the context of the current procedure call). You use DE or its synonym L to get
back to the point of suspended execution after roaming around setting breakpoints or viewing
other files, etc.

Example:
>E
sub.c: asub: 4: bsub(arg);
>1E
main.c: main: 5 +OxOOOOOOOc: asub(i);
>OE
sub.c: asub: 4: bsub(arg);

C Debugger (cdb) 21

Data Viewing Commands

Print Variable's Value
Syntax:

expr
expr / format
expr?format

The expr can be as simple as the name of a variable in a child process; or it can be a complex
combination of variables and arithmetic operators. See the "Expression Conventions" section
for further discussion. The debugger returns the value of the variable designated by expr. It is
handled as if you had typed expr/n (print expression in normal format), unless followed by ; or
}, in which case nothing is printed.

All the variables in expr must be known in the current viewing location. For example, if you try
to query the value of arg when the current location is not in asub(), you will recieve the error
message Unknown name or command "arg".

If there is a conflict between a variable name and a command, the command name takes prece­
dence. To query the value of such a variable, either enclose the name in parentheses, or specify
a format. For example, i in mainO conflicts with the if command:

Example:
>arg
arg = 5
>e main.c
main.c: 1: main()
>i
Missing II{II
>(i)
i = 5

Sometimes during debugging it is necessary to print the contents of a variable using a different
format than the normal default format (n). In the example below i is printed out in decimal as an
integer. There are a variety of formats available (see "Miscellaneous Data Viewing Commands"
and "Display Formats"). The / specifies printing the value of the expr and the? designates
printing the address of the expr. Then" indicates backing up to the preceding location while
the. reverses the direction again to forward.

22 C Debugger (cdb)

>i/d
i = 5
>i?d
-1073741424
>-/d
Oxc000018c 56
>./d
Oxc000018c 56

View Non-current Location Variables
Syntax:

proc.var
proc.depth.expr

With these forms you can view variables in a procedure not containing the current viewing
location or look at a variable at a particular depth on the procedure stack (useful for recursive
programs).

Example:
>asub.arg
arg = 5
>asub.1.arg
Procedure "asub" not found at stack depth 1
>main.1.i
i = 5

List Command
Syntax:

1 [proc[.depth]]
1 (a I bid
1 (f I gil

z)
p I r I s) [string]

This command I lists all parameters and local variables of the current procedure or the specified
proc (if given) at the specified depth (if any). Data is displayed using In format, except that all
arrays and pointers are shown simply as addresses and only the first word of any structure is
shown.

The letters in parentheses stand for assertions, breakpoints, directories (where to search for files),
zignals (signal actions), files (sourcefiles), global variables (known to linker), labels, procedure
names, registers, or special variables. If string is present, only those things with the same initial
characters are listed.

C Debugger (cdb) 23

Example:
>1 main
i = 5
>1 a
No assertions
>1 b

1: count: 1
>1 f
0: main. c
1: sub.c
2: end.c

>1 p as
1: asub

asub: 4: bsub(arg);

Ox60100000 to Ox60100019
Ox60180000 to Ox60180023
Ox60200000 to Ox60200007

Ox60180000 to Ox60180015

Miscellaneous Data Viewing Commands
expr / format

expr?format

"[[flformat]

24 C Debugger (cd b)

Print the contents (value) of expr using format. For example, abc/x
prints the contents of abc as an integer, in hexadecimal.

Print the address of expr using format. For example, abc?o prints
the address of abc in octal.

Back up to the preceding memory location (based on the size of the
last thing displayed). Use format if supplied, or the previous format
if not. Note that no / is needed after the ". Also note that you
can reverse direction again (e.g., start going forward) by entering.
(dot), which is always an alias for the current location, followed by
I RETURN I.

Display Formats
Display formats are used only with Data Viewing Commands. The format is of the form:
[*][count]formchar[size].

" means use alternate address map (e.g., abc), if maps are supported.

The count is the number of times to apply the format style formchar. It must be a number not
an expression.

The size is the number of bytes to be formatted for each count, and overrides the default size

for the format style. It must be a positive decimal number (except short hand notations, see
below). The size is disallowed with those formchar's where it makes no sense.

For example, abc/4x2 prints, starting at the memory location of abc, four two-byte numbers in
hexadecimal.

Using an optional upper-case letter with formats that print numbers has the same affect as
appending the I option to the format (see below). For example, 0 prints 4 bytes in octal (Le.
long). These formats, which are useful on systems where integer is shorter than long, are noted
below. The following formats are available:

n

(dD)

(u U)

(00)

(x X)

(bB)

(c C)

(eE)

(fF)

(gG)

a

Print in the normal format, based on the type. Arrays of char and
pointers to char are interpreted as strings, and structures are fully
dumped.

Print in decimal (as integer or long).

Print in unsigned decimal (as integer or long).

Print in octal (as integer or long).

Print in hexadecimal (as integer or long).

Print a byte in decimal (either way).

Print a character (either way).

Print in e floating point notation (as float or double) (see printf (3)).

Remember that floating point constants are always doubles.

Print in f floating point notation (as float or double).

Print in g floating point notation (as float or double).

Print a string using expr as the address of the first byte.

C Debugger (cdb) 25

s

p

S

Print a string using expr as the address of a pointer to the first byte.
This is the same as saying *expr/a, except for arrays.

Show the type of expr (usually a variable or procedure name). For
true procedure types you must actually call the procedure, (e.g., def

(2) It; alone def is the address of the function, i.e., an integer).

Print the name of the procedure containing address expr.

Do a formatted dump of a structure (only with symbol tables which
support it). Note that expr must be the address of a structure, not
the address of a pointer to a structure.

There are some shorthand notations for size:

b

s

1 byte (char).

2 bytes (short).

4 bytes (long).

These can be appended to formchar instead of a numeric size. For example, abe/xb prints one
byte in hexadecimal.

If you view an object with a size (explicitly or implicitly) less than or equal to the size of a long,
the debugger changes the basetype to something appropriate for that size. This is so . (dot)
works correctly for assignments. For example, abel e2 sets the type of. to short. One side
effect is that if you look at a double using a float format, dot loses accuracy or has the wrong
value.

26 C Debugger (cdb)

Part 3: Job Control Commands
The parent (cdb debugger) and the child (object file) processes take turns running. The debugger
is only active while the child process is stopped due to a signal, including hitting a breakpoint,
or terminated for whatever reason.

Run/Terminate the Program
Syntax

R
r[arguments}

Use R to run a new child process with no argument list and r to run a new child process with
a given argument list (or the previous list if none is given). The existing child process, if any, is
terminated first.

The r command is the most versatile way to begin program execution. The arguments list can
contain < and > for redirecting standard input and standard output. « does an open(2) of file
descriptor 0 for read-only; > does a creat(2) of file descriptor 1 with mode 0666). The arguments

list may contain shell variables and metacharacters, quote marks, or other special syntax. Special
shell syntax is expanded by a Bourne shell. Because {} are shell metacharacters, r cannot be
safely saved in a breakpoint or assertion command list.

If no arguments are given, the ones used with the last r command are used again. No arguments
are used if R was used last. For example, the command line:

>r argl arg2 arg3 >filel <file2

passes argl, arg2, and arg3 as arguments and redirects stdin and stdout. It is equivalent to
running your program from the shell as in:

program argl arg2 arg3 >filel <file2

The r command expands shell variables and meta-characters before passing the argument string
to the child process. Remember, it always kills off an existing child process first. You can do
this manually with the k command, too (see example under the "Terminate" section).

Where the r command starts your program and lets it free run, the R command works similarly,
except no arguments or I/O redirection can be specified.

C Debugger (cdb) 27

Example:
>r
Starting process 942: lIa.outll

breakpoint at Ox60180006
sub.c: asub: 4: bsub(arg);
>r arg1 arg2
Terminating process 942
Starting process 947: lIa.out arg1 arg2"

breakpoint at Ox60180006
sub.c: asub: 4: bsub(arg);
>R
Terminating process 947
Starting process 948: lIa.outll

breakpoint at Ox60180006
sub.c: asub: 4: bsub(arg);

Whenever cdb stops and displays a line of your program, that line has not been executed yet.
So setting a breakpoint (see the "Breakpoint Commands" section) on a line will cause cdb to
stop before executing any code for the statement(s) on that line.

Terminate Current Child Process
Syntax:

k

Terminate (kill) the current child process if one exists.

Example:
>k
Really terminate child process? y
Terminating process 948

28 C Debugger (cdb)

Continue After Breakpoint/Signal
Syntax:

[count]c[line]
[count]C[line]

The c command causes execution to continue after a breakpoint or signal, while ignoring the
signal, if any. The C command allows the signal, if any, to be received. This is fatal to the child
process if it does not catch or ignores the signal.

There are two fields associated with a breakpoint: count and command. The count field is
discussed here; the command field is explained later in the "Breakpoint Commands" section.
The count field associated with a breakpoint is the number of times the breakpoint is encountered
prior to recognition. If the count is positive, the breakpoint is permanent and count decrements
with each encounter. When count goes to zero, the breakpoint is recognized and the count is
reset to one. If count is negative, the breakpoint is temporary and count increments with each
encounter. Once count is zero, the breakpoint is recognized, then deleted.

NOTE

Count is set to -1 (temporary) or 1 (permanent) for any new breakpoint.
Only then can it be modified by the continue (c) command.

The line, if given, designates a temporary breakpoint at that line number, with a count of -1.

Example:
>r
Starting process 942: "a.out"

breakpoint at 060180006
sub.c: asub: 4: bsub(arg);
>c 11 **temporary breakpoint**
Added:
2: count: -1 (temporary) bsub: 11: }

breakpoint at Ox60180022
sub.c: bsub: 11: }
>c
Child process terminated normally
>e main
main.c: main: 4: i = 5;
>5

5: asub(i) ;
>b

C Debugger (cdb) 29

Added:
2: count: 1 main: 5: asub(i);

>r
Starting process 1029: "a. out"

breakpoint at Ox601000a
main.c: main: 5: asub(i);
>C

breakpoint at Ox60180006
sub.c: asub: 4: bsub(arg);

Single Step After Breakpoint
Syntax:

[count]s
[count]S

If there is no child process currently active, you can step into your program with the sand S
commands. These commands start your program and then stop before the first executable line
of the main procedure.

With these two commands, you can execute your program a source line at a time. The s
command traces debuggable procedure calls and enters the debuggable procedure. It single
steps 1 (or count) statements. Successive I RETURN I's repeat with a count of 1. If count is less
than one, the child process is not stepped. Note that the child process continues with the current
signal, if any. (You can set $signal = a to prevent this.)

If you aCcidently step down into a procedure you don't care about, use the bU command to set
a temporary up-level breakpoint, and then continue using c.

The S command steps over procedure calls because cdb detects the occurrence of a procedure
call and plants a temporary breakpoint at the point of return, free runs the program until that
breakpoint is hit, then machine-instruction steps to the next source line boundary. If a breakpoint
is hit during execution of the called procedure, execution stops at that point and the temporary
breakpoint is deleted.

Stepping into a non-debuggable procedure (Le., one that hasn't been compiled with -g) with
s will cause behavior equivalent to S. In general, you can't do anything with non-debuggable
code. In the stepping case, cdb recognizes that it has stepped into an unknown (non-debuggable)
procedure, so it sets an invisible up-level breakpoint and free runs the child.

You can't specify arguments with sand S. If you need to specify arguments to redirect I/O, the
easiest way is to set a breakpoint on the first line of main() and execute with r.

30 C Debugger (cd b)

Example:
>D
All breakpoints deleted.
>s
Starting process 1089: "a. out"
main.c: main: 4: i = 5;
>s
main.c: main: 5: asub(i);
>s
sub.c: asub: 4: bsub(arg);
>S
sub.c: asub: 5: }
>2s
main.c: main: 6: }
Child process terminated normally

The debugger has no knowledge about or control over child processes forked in turn by the
process being debugged. Also, it gets very confused (leading to bad access messages) if the
process being debugged executes a different program via exec{2}.

Child process output may be (and usually is) buffered. Hence it may not appear immediately
after you step through an output statement such as printj{3}. It may not appear at all if you kill
the process.

C Debugger (cdb) 31

Notes

32 C Debugger (cdb)

Part 4: Breakpoint Commands
The debugger provides a number of commands for setting and deleting breakpoints. A breakpoint
has three attributes associated with it:

• address - All the commands which set a breakpoint are simply alternate ways to specify the
breakpoint address. The breakpoint is then encountered whenever the instruction address
is about to be executed, regardless of the path taken to get there. Only one breakpoint
at a time (of any type or count) may be set at a given address. Setting a new breakpoint
at address replaces the old one, if any.

• count - The number of times the breakpoint is encountered prior to recognition. If count is
positive, the breakpoint is permanent, and count decrements with each encounter. Each
time count goes to zero, the breakpoint is recognized, and count is reset to one (so it stays
there until explicitly set to a different value by a c or C command).

If count is negative, the breakpoint is temporary, and count increments with each en­
counter. Once count goes to zero, the breakpoint is recognized, then deleted.

A count of zero is used internally by the debugger and means that the breakpoint is deleted
when the child process next stops for any reason, whether it hit that breakpoint or not.
Commands saved with such breakpoints are ignored. Normally you never see this kind of
breakpoints.

Note that count is set to either -1 (temporary) or 1 (permanent) for any new breakpoint.
It can then be modified only by the c or C command.

• commands - cdb commands which are executed when a breakpoint is recognized. These
are separated by ; and may be enclosed in {} to delimit the list saved with the breakpoint
from other commands on the same line. If the first character is anything other than {, or
if the matching} is missing, the rest of the line is saved with the breakpoint.

Remember that the results of expressions followed by ; or } are not printed unless you
specify a print format. You can use In (normal format) to force printing of a result.

Saved commands are not parsed until the breakpoint is recognized. If commands does not
exist then, after recognition of the breakpoint, the debugger waits for command input.

The debugger has only one active command line at a time. When it begins to execute
breakpoint commands, the remainder (if any) of the old command line is tossed, with notice
given.

C Debugger (cdb) 33

Breakpoints can be set at executable statements only. By definition an executable line is one for
which the compiler has emitted an SLT (Source Line Table) entry. The C compiler emits SLT
entries for each logical statement (assignment, while, for, if, etc). If you put several assignment
statement on the same source line, the compiler will emit several SLT entries for that line. You
can set breakpoints only at the first SLT entry for a line, but stepping through that line with s
will repeatedly show the same line. This is because you are hitting addresses corresponding to
successive SLT entries on that line.

Attempting to set a breakpoint on a non-executable line has several possible results. If the line
is before the first executable line in a procedure or after the last executable line in a file, cdb
displays:

"Can't set breakpoint (invalid address)"

If the line is between two executable lines, cdb rounds forward and sets the breakpoint on the
following executable line.

Set a Breakpoint
Syntax:

[line] b [commands]

cdb provides several commands for setting breakpoints. The simplest is b which sets a permanent
breakpoint at the current line. The commands descriptor is a list of cdb commands, separated
by semi-colons, which are executed when the breakpoint is hit. The line number refers to the
current file. If the line number is omitted, the breakpoint is set on the current line.

When the breakpoint is recognized, commands are executed. If there are none, the debugger
pauses for command input. If immediate continuation is desired, finish the command list with c.

For example, suppose you want to set a breakpoint in some file or procedure other than where
you are at the moment. First, use the e command to get you to the right file or procedure.
Look around for the line where you want the break to occur (using searches, or just by printing
the lines). Once you are there, you can just say b to set a breakpoint on that line.

34 C Debugger (cdb)

So to set a breakpoint in asub() , you must first set the current file to sub.c. Do this with the e
command previously discussed:

e sub.c

or

e asub

Then set the breakpoint with the b command, possibly specifying a line number.

Example:
>e asub

or:

sub.c: asub: 4: bsub(arg);
>b
Added:

1: count: 1 asub: 4: bsub(arg);
>

>e sub.c
sub.c: 1: asub (arg)
>4b
Added:

1: count: 1 asub: 4: bsub(arg);
>D (to delete the breakpoint)

C Debugger (cdb) 35

You can specify commands to be executed when a breakpoint is hit. Consider the following
example in which b t;c plants a breakpoint in bsubO to print a stack trace, then continue execution:

>e bsub
sub.c: bsub: 11: }
>b t;c
Added:

1: count: 1 bsub: 11: }
{t;c}

>r
Starting process 3981: "a.out"

breakpoint at Ox60180022
sub.c: bsub: 11: }
o bsub (myarg = 5) [sub.c: 11]
1 asub (arg = 5) [sub.c: 4]
2 main () [main.c: 5]
3 start +OxOOOOOOla (Oxl, Oxc0000030, Oxc0000040)
4 unknown ()

Child process terminated normally

You can suppress the printing of the location by using the Q command (quiet) as the first in the
list .. If the quiet command appears as the first command in a breakpoint's command list, the
normal announcement of proc: line: text is not made. This allows quiet checks of variables, etc.
to be made without cluttering up the screen with unwanted output. The Q command is ignored
if it appears anywhere else. Here's the same example as above, except it uses the Q command:

>e bsub
sub.c: bsub: 11: }
>b Q;t;c
Added:

1: count: 1 bsub: 11: }
{Q;t;c}

>r
Starting process 22980: "a. out"
o bsub (myarg = 5) [sub.c: 11]
1 asub (arg = 5) [sub.c: 4]
2 main () [main.c: 5]
3 start +OxOOOOOOla (Oxl, Oxc0000030, Oxc0000040)
4 unknown 0

Child process terminated normally

There are several more breakpoint setting commands with a variety of uses; they are listed
below in "Miscellaneous Breakpoint Commands".

36 C Debugger (cdb)

List Breakpoints
Syntax:

B
1 b

Both forms list all breakpoints in the format num: count: nnn proc: 1n: contents, followed
by {commands} (see the example). The leftmost number is an index number for use with the d
(delete) command.

Example:
>B

1: count: 1 bsub: 11:}
(Q;t;c)

>1 b
1: count: 1 bsub: 11:}

(Q;t;c)

Delete Breakpoints
Syntax:

D[b]
[expr] d

D P

D deletes all breakpoints including procedure breakpoints. You can delete breakpoints one-by­
one with the d command.

The version d deletes the breakpoint at the current line or the breakpoint number expr. If expr is
absent, delete the breakpoint at the current line, if any. If there is none, the debugger executes
a B command instead. Be careful; the breakpoints may be renumbered after each d command.

The D p command deletes all procedure breakpoints. All breakpoints set by commands other
than bp will remain set.

C Debugger (cd b) 37

Example:
>D
All breakpoints deleted
>4

4: bsub(arg);
>b
Added:

1: count: 1 asub: 4 bs~b(arg);
>d
Deleted:

1: count: 1 asub: 4 bsub(arg);
>b
Added:

1: count: 1 asub: 4 bsub(arg);
>11

11: }
>b
Added:

2: count: 1 bsub: 11: }
>2d
Deleted:

2: count: 1 bsub: 11: }
>Dp
No procedure breakpoints

Miscellaneous Breakpoint Commands
bp[commands]

38 C Debugger (cdb)

Set permanent breakpoints at the beginning (first executable
line) of every debuggable procedure. When any procedure
breakpoint is hit, commands are executed.

It is permissible to set other permanent or temporary break­
points at the same locations as these procedure breakpoints.
If a procedure and non-procedure breakpoint are both hit at
the same location, the non-procedure breakpoint has prior­
ity; the effect is the same as if there were no procedure
breakpoint. It is not possible to alter the count of a proce­
dure breakpoint. Procedure breakpoints must be activated
and deleted as a group; it is not possible to set or delete
individual ones.

Procedure breakpoints are useful for procedure stepping and
tracing. For example, the command:

bp Q; it; c

sets up procedure tracing by printing the current procedure
at each breakpoint.

For the following commands, if the second character is upper case, e.g. bU instead of bu, then
the breakpoint is temporary (count is -1), not permanent (count is 1).

[depth]bb[commands]
[depth]bB[commands]

[depth]bx[commands]
[depth]bX[commands]

[depth]bu [commands]
[depth]bU [commands]

[depth]bt[proc][commands]
[depth]bT[Proc][commands]

address ba[commands]
address bA[commands]

Set a breakpoint at the beginning (first executable line) of the
procedure at the given stack depth. If depth is not specified,
use the currently viewed procedure, which might not be the
same as the one at depth zero.

Set a breakpoint at the exit (last executable line) of the
procedure at the given stack depth. If depth is not specified,
use the currently viewed procedure, which might not be the
same as the one at depth zero. The breakpoint is set at a
point such that all returns of any kind go through it.

Set an up-level breakpoint. The breakpoint is set immedi­
ately after the return to the procedure at the specified stack
depth (default one, not zero). A depth of zero means current
location, e.g. ObU is a way to set a temporary breakpoint at
the current value of $pc.

Trace current procedure (or procedure at depth, or proc).
This command sets breakpoints at both the entrance and exit
of a procedure. By default, the entry breakpoint commands
are Q; 2t ; c, which show the top two procedures on the
stack and continues. The exit breakpoint is always set to
execute Q ;L; c, which prints the procedure's return value
and continues.

If depth is given, proc must be absent or it is taken as part
of commands. If depth is missing but proc is specified, the
named procedure is traced. If both depth and proc are
omitted, the current procedure is traced, which might not
be the same as the one at depth zero.

If commands are present, they are used for the entrance
breakpoint, instead of the default shown above.

Set a breakpoint at the given code address. Note that ad­
dress can be the name of a procedure or an expression
containing such a name. Of course, if the child process is
stopped in a non-debuggable procedure, or in prologue code
(before the first executable line of a procedure), things may
seem a little strange.

C Debugger (cdb) 39

The next two commands, while not strictly part of the breakpoint group, are used almost
exclusively as arguments to breakpoints (or assertions).

if [expr]

{ commands }[{ commands}]

"any string you like"

40 C Debugger (cd b)

If expr evaluates to a non-zero value, the first group of com­
mands (the first {} block) is executed, else it (and the follow­
ing {, if any) is skipped. In general, all other {} blocks are
always ignored (skipped), except when given as an argument
to an a, b, or ! command. The if command is nestable, and
may be abbreviated to i.

Print the given string, which may have the standard back­
slashed character escapes in it, including \n for newline.
This command is useful for labelling output from breakpoint
commands.

Part 5: Assertion Control Commands
and Signal Handling Commands
Assertion Control Commands
Assertions are lists of commands that are executed before every statement. This means that, if
there is even one active assertion, the program is single stepped at the machine-instruction level.
In other words, it runs very slowly. The primary use for assertions is tracking down nasty bugs,
that result from someone corrupting a global variable. Each assertion is individually activated or
suspended, in addition to the overall assertions mode.

Create New Assertion
Syntax:

a [commands]

To create a new assertion with a given commands list, which is not parsed until it's executed,
use the a command. As with breakpoints, the commands list may be enclosed in {} to delimit it
from other commands on the same line. Use the I a command to list all current assertions and
the overall mode.

The debugger has only one active command line at a time. When it begins to execute assertion
commands, the remainder (if any) of the old command line is tossed, with notice given.

Example:
>a if ($in main) {L;i/n}
Overall assertions state: ACTIVE

0: Active {if ($in main) {L; i/n}}

This code sets an assertion that checks if the next executable statement is in mainO. If that
statement is in mainO, then it is displayed, along with the value of i in normal format. If the next
executable statement is not in mainO, nothing is displayed.

C Debugger (cd b) 41

Modify an Assertion
Syntax:

[expr] a (a I dis)

Modify the assertion numbered expr: activate it, delete it, or suspend It. Suspended assertions
continue to exist, but have no effect until reactivated.

Example:
>e main
main.c: main: 4: i = 5;
>a if ($in main) {L;i/nl}
Overall assertions state: ACTIVE

0: Active {if ($in main) {L; i/nl}}
>Oad (delete the mistyped assertion above)
Assertion 0 deleted
>1 a
No assertions
>a if ($in main) {L;i/n}
Overall assertions state: ACTIVE

0: Active {if ($in main) {L; i/n}}
>r
Starting process 27700: "a. out II
main.c: main: 4: i = 5;
i = 0
main.c: main: 5: asub(i) ;
i = 5
main. c: main: 6: }
i = 5
Child process terminated normally
>Oad
Assertion 0 deleted

The a command can be used to trace variable values. For example, it can be used to trace the
variable i which is in main but not known in asubO or bsubO.

Example:
a if (abc != $abc) {$abc = abc; abc/d; if (abc> g) {x}}

This command sets up an assertion to report the changing value of some global variable (abc),
and to stop if it ever exceeds some value. It uses a debugger local variable ($abc) to keep track
of the value of abc.

42 C Debugger (cdb)

Tracing Program Execution
aL

Syntax:
a L

This just traces execution a line at a time until something happens (e.g., you hit the I BREAK I
key). Output from running program with above assertion. The example below illustrates setting
a flag indicating whether bsubO has been called. It echos the flag value at every statement.

Example:
>a L;if ($in bsub) {$bsubcalled=l}; $bsubcalled/n
Overall assertions state: ACTIVE
0: Active {L;if ($in bsub) {$bsubcalled=l}; $bsubcalled/n}

>$bsubcalled=O
$bsubcalled = 0
>r
Starting process 27718: "a. out"
main.c: main: 4: i = 5;
$bsubcalled = 0
main.c: main: 5: asub(i);
$bsubcalled = 0
sub.c: asub: 4: bsub(arg);
$bsubcalled = 0
sub.c: bsub: 11: }
$bsubcalled = 1
sub.c: asub: 5: }
$bsubcalled = 1
main.c: main: 6: }
$bsubcalled = 1
Child process terminated normally

C Debugger (cd b) 43

Toggle the State
Syntax:

A

Toggle the overall state of the assertions mechanism between active and suspended.

Example:
>A
Assertions are SUSPENDED
>r
Terminating process 1299
Starting process 1300: "a. out"

breakpoint at Ox6010000a
main.c: main: 5: asub(i);
>A
Assertions are ACTIVE
>r
Terminating process 1299
Starting process 1300: "a. out"
main.c: main: 4: i = 5;

Delete All Assertions
Syntax:

D a

Delete all assertions.

Example:
>D a
All assertions deleted

Certain commands (r, R, c, C, s, S, and k) are not allowed while assertions are running. They
must appear after the x, if at all (see "Display Formats").

44 C Debugger (cdb)

Signal Handling Commands
The debugger catches all signals bound for the child process before the child process sees them.
(This is a function of the ptrace(2) mechanism.) For many signals, this is reasonable. Most
processes are not set up to handle segmentation errors, etc. Other processes do quite a bit with
signals and the constant need to continue from a signal catch can be tedious. It is possible to
alter this behavior for any or all signals.
There are three signal action attributes in the debugger:

• cdb can have the child process ignore or not ignore a signal. This determines whether the
child process sees the signal.

• cdb can report or not report on when a child process receives a signal. For example, cdb
prints out the line it occurred on.

• cdb can stop or not stop when a child process receives a signal.

Each above attribute is independent of the other two, yet six combinations are legal.

For this section a different program is required since main.c does not send or receive signals.
Type this new program in the file sig.c:

main()
{

}

long 1.J;
i 5;
j = i/O;

To compile and run the program type:

cc -g -0 sig sig.c
sig

Start the cdb debugger by entering:

cdb sig

C Debugger (cdb) 45

Reverse Handling of Signal
Syntax

[signa~ Z [i][r][s][Q]

The z command maintains the zignal (signal) handling table. The variable signal is a valid signal
number (the default is the current signal). The options (which must be all one word) toggle the
state of the appropriate flag: ignore, report, or stop. If Q is present, the new state of the signal
is not printed.

The sequence I z is used to list the current handling of all signals. The sequence 8 Z will only
report on signal 8. Note that just z with no options tells you the state of the current or selected
signal.

To toggle the state of a signal, type signal z and the actions to toggle. For example, assuming a
start up state of: do stop, don't ignore, and do report, the command 8 z sir tells the debugger
to not stop, do ignore and do not report on signal 8. The command 8 z ir toggles Ignore to
No and Report to Yes. Doing 8 z ir again toggles the flags back to the previous state.

When the debugger ignores a signal, the child process does not receive that signal.

Example:
cdb sig
Source files: 2
Procedures: 2
sig.c: main: 4: i 5;
>1 z
Sig Stop Ignore Report

1 Yes No Yes
2 Yes Yes Yes

8 Yes No Yes

19 Yes No Yes
>8 z
Sig Stop Ignore Report

8 Yes No Yes
>r
Starting process 11827: "sig"

Name
hangup
interrupt

floating point exception

power fail
(list current state of signal 8)

Name
floating point exception

floating pOint exception (no ignore) at Ox6010000e
sig.c: main: 5 +Ox00000004: j = i/O;
>8 z sir (reverse the handling of signal 8)
Sig Stop Ignore Report Name

8 No Yes No floating point exception
>r

46 C Debugger (cd b)

Terminating process 11827
Starting process 11873: "sign
Child process terminated normally
>8 z ir
Sig Stop Ignore Report Name

8 No No Yes floating point exception
>r
Starting process 11891: "sign

floating point exception (no stop) (no ignore) at Ox6010000e
sig.c: main: 5 +Ox00000004: j = i/O;
floating pOint exception (core dumped) (no ignore) at 00000000
(file unknown): unknown: (line unknown)
Child process terminated on signal
>8 z ir
Sig Stop Ignore Report Name

8 No Yes No floating point exception

C Debugger (cdb) 47

Notes

48 C Debugger (cdb)

Part 6: Record, Playback,
and Other cdb Commands
Record and Playback Commands
The debugger supports a record-and-playback feature to help re-create program states and to
record all debugger output. It is particularly useful for bugs requiring long setups. With playback,
you can automatically re-create a program state that may take a long time to reconstruct.

The -r (record) and -p (playback) options specify record and playback files that the debugger will
use. The example below sets up a scenario similar to that in the "Tracing Program Execution"
section, with several other command lines entered after the command cdb a. out -r record1.

Example:
cdb a.out -r record1
Source files: 3
Procedures: 4
Recording is ON, overwriting "record1"
main.c: main: 4: i=5;
>a L;if ($in bsub) {$bsubcalled=1}; $bsubcalled/n
Overall assertions state: ACTIVE
0: Active {L;if ($in bsub) {$bsubcalled=1}; $bsubcalled/n}

>$bsubcalled=O
$bsubcalled = 0
>r
Starting process 27718: "a. out"
main.c: main: 4: i = 5;
$bsubcalled = 0
main.c: main: 5: asub(i);
$bsubcalled = 0
sub.c: asub: 4: bsub(arg);
$bsubcalled = 0
sub.c: bsub: 11: }
$bsubcalled = 1
sub.c: asub: 5: }
$bsubcalled = 1
main.c: main: 6: }
$bsubcalled = 1
Child process terminated normally
>e asub
sub.c: asub: 4: bsub(arg);
>b t;c
Added:

2: count: 1 asub: 4: bsub(arg);
{t;c}

>1 b

C Debugger (cdb) 49

1: count: 0 (temporary) start +Ox00000024: (line unknown)
2: count: 1 asub: 4: bsub(arg);

{t;c}
>A
Assertions are SUSPENDED
>1 a
Overall assertions state: SUSPENDED
0: Active {L;if ($in bsub) {$bsubca11ed=1}; $bsubcal1ed/n}

>q
Really quit? y
$

All these commands are now saved in the file record 1 :

a L;if ($in bsub) {$bsubca11ed=1}; $bsubca11ed/n
$bsubcalled=O
r
e asub
b t;c
1 b
A
1 a
q
y

Cdb can then be exited and returned to by:

cdb a.out -p record1

The debugger re-runs all the commands and thereby re-creates the original environment.

You can also save the instructions from inside cdb using the > recordl command as the first
statement of the session. The sequence of commands typed in immediately after is saved in
recordl. Now instead of quiting cdb, the record file can be closed and started as a playback
using >c followed by < recordl. The commands saved in recordl are then re-executed and
the results printed to the screen. The < < command plays back recordl in single step mode
and provides the specialized set of instructions (see the example).

50 C Debugger (cdb)

Example:
cdb sig
Source files: 2
Procedures: 2
sig.c main: 4: i = 5;
> > recordl
Recording is ON, overwriting "recordl"
>b t;c
Added:

>r

1: count: 1 main: 4: i 5;
{t,c}

Starting Process 13597: "a.out"

breakpoint at Ox60100006
main.c: main: 4: i = 5;
o main () [main.c: 4]
1 start +OxOOOOOOla (Oxl1, Oxc0000030, Oxc0000040)
2 unknown 0

Child process terminated normally
> > C

Closing record file "recordl"
> < recordl (start playback from file "recordl")
Playing back from "recordl"
b t;c
Added:

r

1: count: 1 main: 4: i 5;
{t,c}

Starting Process 13597: "a. out"

breakpoint at Ox60100006
main.c: main: 4: i = 5;
o main () [main.c: 4]
1 start +OxOOOOOOla (Oxl1 , Oxc0000030, Oxc0000040)
2 unknown 0

Child process terminated normally
>c
End of playback
> « recordl (single step, with instructions, playback)
Playing back from "recordl"
b t;c «cr>, S, <num> , C, Q, or 1): 1
<cr> execute one command line;
S skip one command line;
<num> execute number of command lines;
C continue through all playback;
Q quit playback mode.
1
Deleted:

C Debugger (cdb) 51

1 : count: 1 main: 4: i 5;
{t;c}

Added:
1: count: 1 main: 4: i = 5;

{t;c}
r «cr> , S, <num> , C, Q, or 1) : Q
End of playback

Miscellaneous Record and Playback Commands
The rest of the record and playback commands are used in the same manner with slight variations.
The syntax and a brief decription of each is listed below:

>file

»file

> <Ofile

»<ofile

>(t I f I c)

><O(t I f I c)

>

><0

This command sets or changes the recordfile to file and turns record­
ing on. Any previous contents of file are overwritten. Only com­
mands are recorded to this file.

The same as >file, but appends to file instead of overwriting.

Set or change record-all file to file, for overwriting or appending.
The record-all file may be opened or closed independently of (in
parallel with) the recordfile. All debugger standard output is copied
to the record-all file, including prompts, commands entered, and
command output. However, child process output is not captured.

Turn recording on (t) or off (f), or close the recording file (c). When
recording is resumed, it appends after commands recorded earlier.
In this context, » is the same as >.

Turn record-all on, off, or close the record-all file. In this context,
> ><0 is the same as ><0.

Display the current recording status. » does the same thing.

Display the current record-all status. »<0 does the same thing.

Only command lines read from the keyboard or a playback file are recorded in the recordfile.
For example, if recording is turned on in an assertion, it doesn't take affect until assertion
execution stops. Both the commands and resulting output are recorded in the record-all file.

Command lines beginning with >, <, or ! are not copied to the current recordfile (but they are
copied to the record-all file). You can override this by beginning the lines with blanks.

52 . C Debugger (cdb)

Other Commands
Two options that were not covered previously are:

• -s - size of cache option sets the size of the string cache to the given number of bytes,
instead of the default.

• -u - unique names option tells the debugger to expect names in the symbol table to start
with an extra underscore.

Each of the following commands are fairly straightforward. Therefore, only the syntax and a
brief description of each is provided:

I RETURN I
-0

! [command_line]

f [printf-style-format]

h I help

I

q

z

g line

Repeat the previous command

To repeat one command 10 times use I CTRL I [[]

This shell escape invokes a shell program in the same manner as
vi(1).

Set address printing format (the default is reset), using printf(3)
format specifications (not debugger format styles).

Print the debugger help file (command summary).

Print information (inquire) about the state of the debugger.

Quit the debugger. To be sure you don't lose a valuable environ­
ment, this command requests confirmation.

Toggle case sensitivity in searches. This affects everything: file
names, procedure names, variables, and string searches! The de­
bugger start., out as not case sensitive.

Go to an address in the procedure on the stack at depth zero (not
necessarily the same as the currently viewed procedure).

C Debugger (cdb) 53

Notes

54 C Debugger (cdb)

Index

a
activate assertions ... 44
assertion control commands ... 41 ff
assertions, activate, suspend, or delete 44

b
bp command ... 38
breakpoint commands .. 33ff
breakpoint/ signal, continue after 29

c
cache, string, size of .. 53
change files and print first executable line 16
command conventions ... 6
commands, record/playback ... 49ff
compiling programs with debugging option 4
continue after breakpoint/signal ... 29
conventions:

command ... 6
expression .. 9
notational .. 6
procedure call ... 9
variable name .. 7

corefile ... 4
create new assertion .. 41
current line, move forward or backward from 18

d
Data Viewing Commands ... 22ff
debugger options ... 4
delete all assertions .. 44
delete breakpoints ... 37
dir command ... 19
display formats .. 25ff

Index 55

e
E command .. 21
e command .. 16
example program .. 14
expression conventions ... 9

f
file code viewing commands .. 15

9
-g compiler option required to debug programs 4

h
handling of signal, reverse 46

.
I

invoking cdb .. 12

j
job control commands 27££

k
kill current child process 28

I
L command .. 19
I command .. .
list breakpoints .
list command
location variables, view non-current

m

23
37
23
23

memory requirements .. 4
modify and assertion ... 42
move forward or backward from current line 18

56 Index

n
notational conventions ... 6

o
objectfile ... 4
options, debugging .. 4

p
p command .. 16
parenti child relationship of cdb and program 3
playback/record commands ... 49ff
print current file, procedure, and line number 15
print first executable line, change files and 16
print groups of lines .. 16
print variable value ... 22
print window of text 17
procedure call conventions .. 9
ptrace .. 45
ptrace(2) ... 3

r
record/playback commands ... 49ff
reverse signal state 46
run program .. 27

5
searches 19
set breakpoint .. 34
set permanent breakpoints at start of each procedure 38
set viewing location .. 21
signal handling commands .. 45ff
signal state, reverse .. 46
signal/breakpoint, continue after 29
single-step after breakpoint ... 30
size of string cache .. 53
stack viewing commands ... 20ff
stop program ... 27
suppress printing of breakpoint location 36
suspend assertions ... 44

Index 57

t
T command .. 20
t command .. 20
terminate current child process .. 28
terminate program ... 27
text, print window of ... 17
toggle signal state .. 46
toggle state of assertions mechanism .. 44
trace program execution 43
trace stack ... 20

u
unique names option ... 53

v
variable name conventions .. 7
variable value, print .. 22
view non-current location variables ... 23
viewing commands .. 15H

w
wand W commands 17
window of text, print ... 17

58 Index

Table of Contents
Make a Program for Maintaining Computer Programs

Introduction. .. 2
Basic Features. .. 3
Description Files and Substitutions .. 6
Command Usage .. " 8
Implicit Rules ... 10
Example ... 12
Suggestions and Warnings .. 14
Appendix. Suffixes and Transformation Rules 15

Make a Program for
Maintaining Computer Programs
In a programming project, it is easy to lose track of which files need to be reprocessed or
recompiled after a change is made in some part of the source. Make provides a simple mechanism
for maintaining up-to-date versions of programs that result from many operations on a number
of files. It is possible to tell Make the sequence of commands that create certain files, and the
list of files that require other files to be current before the operations can be done. Whenever
a change is made in any part of the program, the Make command will create the proper files
simply, correctly, and with a minimum amount of effort.

The basic operation of Make is to find the name of a needed target in the description, ensure
that all of the files on which it depends exist and are up to date, and then create the target if
it has not been modified since its generators were. The description file really defines the graph
of dependencies; Make does a depth-first search of this graph to determine what work is really
necessary.

Make also proVides a simple macro substitution facility and the ability to encapsulate commands
in a single file for convenient administration.

Make a Program for Maintaining Computer Programs 1

Introduction
It is common practice to divide large programs into smaller, more manageable pieces. The pieces
may require quite different treatments: some may need to be run through a macro processor,
some may need to be processed by a sophisticated program generator (such as Yacc or Lex).
The outputs of these generators may then have to be compiled with special options and with
certain definitions and declarations. The code resulting from these transformations may then
need to be loaded together with certain libraries under the control of special options. Related
maintenance activities involve running complicated test scripts and installing validated modules.
Unfortunately, it is very easy for a programmer to forget which files depend on which others,
which files have been modified recently, and the exact sequence of operations needed to make
or exercise a new version of the program. After a long editing session, one may easily lose
track of which files have been changed and which object modules are still valid, since a change
to a declaration can obsolete a dozen other files. Forgetting to compile a routine that has been
changed or that uses changed declarations will result in a program that will not work, and a bug
that can be very hard to track down. On the other hand, recompiling everything in sight just to
be safe is very wasteful.

The program described in this report mechanizes many of the activities of program development
and maintenance. If the information on inter-file dependences and command sequences is stored
in a file, the simple command make is frequently sufficient to update the interesting files, regard­
less of the number that have been edited since the last "make". In most cases, the description
file is easy to write and changes infrequently. It is usually easier to type the make command
than to issue even one of the needed operations, so the typical cycle of program development
operations becomes

think ~ edit ~ make ~ test ...

Make runs on the HP-UX operating system, and is most useful for medium-sized programming
projects; it does not solve the problems of maintaining multiple-source versions or of describing
huge programs.

2 Make a Program for Maintaining Computer Programs

Basic Features
The basic operation of Make is to update a target file by ensuring that all of the files on which
it depends exist and are up to date, then creating the target if it has not been modified since its
dependents were. Make does a depth-first search of the graph of dependences. The operation
of the command depends on the ability to find the date and time that a file was last modified.

To illustrate, let us consider a simple example: A program named prog is made by compiling
and loading three C-Ianguage files x.c, y.c, and z.c with the IS library. By convention, the output
of the C compilations will be found in files named x.o, y.o, and z.o. Assume that the files x.c
and y.c share some declarations in a file named defs, but that z.c does not. That is, x.c and y.c
have the line:

#include "defs"

The following text describes the relationships and operations:

prog: x.o y.o z.o
cc x.o y.o z.o -IS -0 prog

x.o y.o: defs

If this information were stored in a file named Makefile, the command:

make

would perform the operations needed to recreate prog after any changes had been made to any
of the four source files x.c, y.c, z.c, or defs.

Make operates using three sources of information: a user-supplied description file (as above),
file names and "last-modified" times from the file system, and built-in rules to bridge some of
the gaps. In our example, the first line says that prog depends on three ".0" files. Once these
object files are current, the second line describes how to load them to create prog. The third
line says that x.o and y.o depend on the file defs. >From the file system, make discovers that
there are three ".c" files corresponding to the needed ".0" files, and uses built-in information on
how to generate an object from a source file (i.e., issue a "cc -c" command).

Make a Program for Maintaining Computer Programs 3

The following long-winded description file is equivalent to the one above, but takes no advantage
of make's innate knowledge:

prog : x.o y.o z.o
ee x.o y.o Z.o \-IS \-0 prog

x.o x.e defs
ee \-c x.e

y.o y.e defs
ee \-e y.e

Z.O z.e
ee \-e z.e

If none of the source or object files had changed since the last time prog was made, all of the
files would be current, and the command

make

would just announce this fact and stop. If, however, the defs file had been edited, x.c and y.c
(but not z.c) would be recompiled, and then prog would be created from the new ".0" files. If
only the file y.c had changed, only it would be recompiled, but it would still be necessary to
reload prog.

If no target name is given on the make command line, the first target mentioned in the description
is created; otherwise the specified targets are made. The command

make x.O

would recompile x.o if x.c or defs had changed.

If the file exists after the commands are executed, its time of last modification is used in further
decisions; otherwise the current time is used. It is often q~ite useful to include rules with
mnemonic names and commands that do not actually produce a file with that name. These
entries can take advantage of make's ability to generate files and substitute macros. Thus, an
entry "save" might be included to copy a certain set of files, or an entry "cleanup" might be
used to throwaway unneeded intermediate files. In other cases one may maintain a zero-length
file purely to keep track of the time at which certain actions were performed. This technique is
useful for maintaining remote archives and listings.

4 Make a Program for Maintaining Computer Programs

Make has a simple macro mechanism for substituting in dependency lines and command strings.
Macros are defined by command arguments or description file lines with embedded equal signs.
A macro is invoked by preceding the name by a dollar sign; macro names longer than one
character must be parenthesized. The name of the macro is either the single character after the
dollar sign or a name inside parentheses. The following are valid macro invocations:

$ (CFLAGS)
$2
$ (xy)
$Z
$(Z)

The last two invocations are identical. $$ is a dollar sign. All of these macros are assigned
values during input, as shown below. Four special macros change values during the execution
of the command: $*, $@, $?, and $<. They will be discussed later. The following fragment
shows the use:

OBJECTS = x.o y.o z.o
LIBES = -IS
prog: $(OBJECTS)

cc $(OBJECTS) $ (LIBES) -0 prog

The command

make

loads the three object files with the IS library. The command

make "LIBES= -11 -IS"

loads them with both the Lex ("-ll") and the Standard ("-IS") libraries, since macro definitions
on the command line override definitions in the description. (It is necessary to quote arguments
with embedded blanks in HP-UX commands.)

The following sections detail the form of description files and the command line, and discuss
options and built-in rules in more detail.

Make a Program for Maintaining Computer Programs 5

Description Files and Substitutions
A description file contains three types of information: macro definitions, dependency information,
and executable commands. There is also a comment convention: all characters after a sharp
(#) are ignored, as is the sharp itself. Blank lines and lines beginning with a sharp are totally
ignored. If a non-comment line is too long, it can be continued using a backslash. If the last
character of a line is a backslash, the backslash, newline, and following blanks and tabs are
replaced by a single blank.

A macro definition is a line containing an equal sign not preceded by a colon or a tab. The name
(string of letters and digits) to the left of the equal sign (trailing blanks and tabs are stripped) is
assigned the string of characters following the equal sign (leading blanks and tabs are stripped.)
The following are valid macro definitions:

2 = xyz
abc = -11 -ly -IS
LIBES =

The last definition assigns UBES the null string. A macro that is never explicitly defined has the
null string as value. Macro definitions may also appear on the make command line (see below).

Other lines give information about target files. The general form of an entry is:

targetl [target2 ...] [:] [dependentl ...] [; commands] [# ...]
[(tab) commands] [# . . .]

Items inside brackets can be omitted. Targets and dependents are strings of letters, digits,
periods, and slashes. (Shell metacharacters "." and "?" are expanded.) A command is any
string of characters not including a sharp (except in quotes) or newline. Commands may appear
either after a semicolon on a dependency line or on lines beginning with a tab immediately
following a dependency line.

A dependency line may have either a single or a double colon. A target name may appear on
more than one dependency line, but all of those lines must be of the same (single or double
colon) type.

1. For the usual single-colon case, at most one of these dependency lines may have a command
sequence associated with it. If the target is out of date with any of the dependents on any
of the lines, and a command sequence is specified (even a null one following a semicolon
or tab), it is executed; otherwise. a default creation rule may be invoked.

6 Make a Program for Maintaining Computer Programs

2. In the double-colon case, a command sequence may be associated with each dependency
line; if the target is out of date with any of the files on a particular line, the associated
commands are executed. A built-in rule may also be executed. This detailed form is of
particular value in updating archive-type files.

If a target must be created, the sequence of commands is executed. Normally, each command
line is printed and then passed to a separate invocation of the Shell after substituting for macros.
(The printing is suppressed in silent mode or if the command line begins with an @ sign). Make
normally stops if any command signals an error by returning a non-zero error code. (Errors are
ignored if the "-i" flags has been specified on the make command line, if the fake target name
".IGNORE" appears in the description file, or if the command string in the description file begins
with a hyphen. Some HP-UX commands return meaningless status). Because each command
line is passed to a separate invocation of the Shell, care must be taken with certain commands
(e.g., cd and Shell control commands) that have meaning only within a single Shell process; the
results are forgotten before the next line is executed.

Before issuing any command, certain macros are set.
- $@ is set to the name of the file to be "made".
- $7 is set to the string of names that were found to be younger than the target.

If the command was generated by an implicit rule (see below),
- $< is the name of the related file that caused the action, and
- $* is the prefix shared by the current and the dependent file names.

If a file must be made but there are no explicit commands or relevant built-in rules, the commands
associated with the name" . DEFAULT" are used. If there is no such name, make prints a message
and stops.

Make a Program for Maintaining Computer Programs 7

Command Usage
The make command takes four kinds of arguments: macro definitions, flags, description file
names, and target file names.

make [flags] [macro definitions] [targets]

The following summary of the operation of the command explains how these arguments are
interpreted.

First, all macro definition arguments (arguments with embedded equal signs) are analyzed and
the assignments made. Command-line macros override corresponding definitions found in the
description files.

8 Make a Program for Maintaining Computer Programs

Next, the flag arguments are examined. The permissible flags are

-i

-5

-r

-n

-t

-q

-p

-d

-f

Ignore error codes returned by invoked commands. This mode is entered if the
fake target name ".IGNORE" appears in the description file.

Silent mode. Do not print command lines before executing. This mode is also
entered if the fake target name ".SILENT" appears in the description file.

Do not.use the built-in rules.

No execute mode. Print commands, but do not execute them. Even lines begin­
ning with an "@" sign are printed.

Touch the target files (causing them to be up to date) rather than issue the usual
commands.

Question. The.IT make command returns a zero or non-zero status code de­
pending on whether the target file is or is not up to date.

Print out the complete set of macro definitions and target descriptions

Debug mode. Print out detailed information on files and times examined.

Description file name. The next argument is assumed to be the name of a
description file. A file name of "-" denotes the standard input. If there are no
"-f" arguments, the file named makefile or Makefile in the current directory is
read. The contents of the description files override the built-in rules if they are
present).

Finally, the remaining arguments are assumed to be the names of targets to be made; they are
done in left to right order. If there are no such arguments, the first name in the description files
that does not begin with a period is "made".

Make a Program for Maintaining Computer Programs 9

Implicit Rules
The make program uses a table of interesting suffixes and a set of transformation rules to supply
default dependency information and implied commands. (Descriptions of these tables and means
of overriding them are included at the end of this tutorial.) The default suffix list is:

.0 Object file

.c C source file

.e Efl source file

.r Ratfor source file

.f Fortran source file

.s Assembler source file

.y Yacc-C source grammar

.yr Yacc-Ratfor source grammar

.ye Yacc-Efl source grammar

.1 Lex source grammar

The following diagram summarizes the default transformation paths. If there are two paths
connecting a pair of suffixes, the longer one is used only if the intermediate file exists or is
named in the description.

.0

.c
:/7~
.r.e .f .s .y .yr .ye .I .d

/\ I I
.y .I .yr .ye

If the file x.o were needed and there were an x.c in the description or directory, it would be
compiled. If there were also an x.l, that grammar would be run through Lex before compiling the
result. However, if there were no x.c but there were an x./, make would discard the intermediate
C-Ianguage file and use the direct link in the graph above.

10 Make a Program for Maintaining ·Computer Programs

It is possible to change the names of some of the compilers used in the default, or the flag
arguments with which they are invoked by knowing the macro names used. The compiler names
are the macros AS, CC, RC, EC, YACC, YACCR, YACCE, and LEX. The command

make CC=newcc

causes the "newcc" command to be used instead of the usual C compiler. The macros CFLAGS,
RFLAGS, EFLAGS, YFLAGS, and LFLAGS may be set to cause these commands to be issued
with optional flags. Thus,

make "CFLAGS=-Q"

causes the optimizing C compiler to be used.

Make a Program for Maintaining Computer Programs 11

Example
As an ex.ample of the use of make, we will present the description file used to maintain the
make command itself. The code for make is spread over a number of C source files and a Yacc
grammar. The description file contains:

Description file for the Make command

P = und -3 opr -r2 # send to GCOS to be printed
FILES = Makefile version.c defs main.c doname.c misc.c files.c dosys.c gram.y lex.c gcos.c
OBJECTS = version.o main.o doname.o misc.o files.o dosys.o gram.o
LIBES= -IS
LINT = lint -p
CFLAGS =-0

make:

$(OBJECTS):
gram.o:

cleanup:

install:

print:

test:

lint:

arch:

$(OBJECTS)
cc $(CFLAGS) $(OBJECTS) $(LIBES) -0 make size make

defs
lex.c

-rm *.0 gram.c
-du

@size make /usr /bin/make
cp make /usr/bin/make ; rm make

$(FILES)
pr $? $P
touch print

print recently changed files

make -dp grep -v TIME > lzap
/usr/bin/make -dp grep -v TIME>2zap
diff lzap 2zap
rm lzap 2zap

dosys.c doname.c files.c main.c misc.c version.c gram.c
$(LINT) dosys.c doname.c files.c main.c misc.c version.c gram.c
rm gram.c

ar uv /sys/source/s2/make.a $(FILES)

12 Make a Program for Maintaining Computer Programs

Make usually prints out each command before issuing it. The following output results from typing
the simple command

make

in a directory containing only the source and description file:

cc -c version.c
cc -c main.c
cc -c doname.c
cc -c misc.c
cc -c files.c
cc -c dosys.c
yacc gram.y
mv y. tab.c gram.c
cc -c gram.c
cc version.o main.o doname.o misc.o files.o dosys.o gram.o \-IS \-0 make
13188+3348+3044 = 19580b = 046174b

Although none of the source files or grammars were mentioned by name in the description file,
make found them using its suffix rules and issued the needed commands. The string of digits
results from the "size make" command; the printing of the command line itself was suppressed
by an @ sign. The @ sign on the size command in the description file suppressed the printing
of the command, so only the sizes are written.

The last few entries in the description file are useful maintenance sequences. The "print" entry
prints only the files that ha\7e been changed since the last "make print" command. A zero-length
file print is maintained to keep track of the time of the printing; the $? macro in the command
line then picks up only the names of the files changed since print was touched. The printed
output can be sent to a different printer or to a file by changing the definition of the P macro:

make print lip = opr -sp"

or

make print IIp= cat >zap"

Make a Program for Maintaining Computer Programs 13

Suggestions and Warnings
The most common difficulties arise from make's specific meaning of dependency. If file x.c has
an #include "defs" line, then the object file x.o depends on defs; the source file x.c does not.
(If defs is changed, it is not necessary to do anything to the file x.c, while it is necessary to
recreate x.o.)

To discover what make would do, the "-n" option is very useful. The command

make -n

orders make to print out the commands it would issue without actually taking the time to execute
them. If a change to a file is absolutely certain to be benign (e.g., adding a new definition to an
include file), the "-t" (touch) option can save a lot of time: instead of issuing a large number of
superfluous recompilations, make updates the modification times on the affected file. Thus, the
command

make -ts

("touch silently") causes the relevant files to appear up to date. Obvious care is necessary, since
this mode of operation subverts the intention of make and destroys all memory of the previous
relationships.

The debugging flag ("-d") causes make to print out a very detailed description of what it is
doing, including the file times. The output is verbose, and recommended only as a last resort.

14 Make a Program for Maintaining Computer Programs

Appendix. Suffixes and Transformation Rules
The make program itself does not know what file name suffixes are interesting or how to
transform a file with one suffix into a file with another suffix. This information is stored in an
internal table that has the form of a description file. If the "-r" flag is used, this table is not
used.

The list of suffixes is actually the dependency list for the name ".SUFFIXES"; make looks for
a file with any of the suffixes on the list. If such a file exists, and if there is a transformation
rule for that combination, make acts as described earlier. The transformation rule names are
the concatenation of the two suffixes. The name of the rule to transform a ".r" file to a ".0"

file is thus ".r.o". If the rule is present and no explicit command sequence has been given in
the user's description files, the command sequence for the rule ".r.o" is used. If a command
is generated by using one of these suffixing rules, the macro $* is given the value of the stem
(everything but the suffix) of the name of the file to be made, and the macro $< is the name of
the dependent that caused the action.

The order of the suffix list is significant, since it is scanned from left to right, and the first name
that is formed that has both a file and a rule associated with it is used. If new names are to
be appended, the user can just add an entry for ".SUFFIXES" in his own description file; the
dependents will be added to the usual list. A ".SUFFIXES" line without any dependents deletes
the current list. (It is necessary to clear the current list if the order of names is to be changed).

The following is an excerpt from the default rules file:

.SUFFIXES : .0 .c .e .r .f .y .yr .ye .1 .s
YACC=yacc
YACCR=yacc -r
YACCE=yacc -e
YFLAGS=
LEX=lex
LFLAGS=
CC=cc
AS=as -
CFLAGS=
RC=ec
RFLAGS=
EC=ec
EFLAGS=
FFLAGS=
.c.o:

Make a Program for Maintaining Computer Programs 15

(CC) $(CFLAGS) -c $<
.e.o .r.o J.o :

(EC) $(RFLAGS) $(EFLAGS) $(FFLAGS) -c $<
.s.o:

(AS) -0 $@ $<
.y.o :

(YACC) $(YFLAGS) $<
(CC) $(CFLAGS) -c y.tab.c
rm y.tab.c
mv y.tab.o $@

.y.c:
(YACC) $(YFLAGS) $<
mv y.tab.c $@

16 Make a Program for Maintaining Computer Programs

Table of Contents

SCCS User's Guide
Introduction. .. 1
Terms .. 2

S-files .. 2
Deltas .. 2
SIDs (Version Numbers) .. 2
ID Keywords .. 3

Creating SCCS Files ... 4
Removing SCCS Files 5
Getting Files for Compilation .. 6
Changing Files (Creating Deltas) .. 7

Getting a Copy to Edit ... 7
Merging the Changes Back Into the S-File 7
When To Make Deltas .. 8
What's Going On: The Sact Command 8
Using ID Keywords .. 9
Creating New Releases 11
Cancelling an Editing Session .. 12

Restoring Old Versions .. 13
Reverting to Old Versions .. 13
Selectively Excluding Old Deltas. .. 14
Selectively Including Deltas 14
Removing Deltas .. 15

The Help Command 16
Auditing Changes .. 17

The Prs Command ... 17
Determining' Why Lines Were Inserted .. 18
Comparing Versions. .. 18

Files Used by SCCS .. 19
S-Files. .. 19
G-Files ... 21
L-Files ... 21
P-Files ... 22
D-Files .. 22
Q-Files .. 23
X-Files ... 23
Z-Files ... 23

Concurrent Editing. .. 24

Concurrent Edits on Different Versions .. 24
Concurrent Edits on the Same Version .. 25

Saving Yourself. .. 25
Making Temporary Changes. .. 25
Recovering an Edit File .. 26
Restoring the S-File .. 26

Using the Admin Command. .. 27
Creating SCCS Files .. 27
Adding Comments to Initial Delta 28
Descriptive Text in Files .. " 28
Setting SCCS File Flags. .. 29
Specifying Who Can Edit a File .. 30

Maintaining Different Branches. .. 32
Creating a Branch .. 32
Retrieving a Branch .. 33
Branch Numbering .. 33
A Warning. .. 34

SCCS's Protection Facilities. .. 35
General File Protection .. 35
System Protection Using Admin. .. 36

Using SCCS With Make .. 37
To Maintain Groups of Programs .. 38
To Maintain a Library .. 39
To Maintain a Large Program 40

Using SCCS on a Multi-User Project. .. 41
How the SCCS Interface Works .. 42
Configuring an SCCS System Using the Interface .. 42

Quick Reference .. 46
Commands .. 46
ID Keywords '. 48

sees User's Guide
Introduction
sces (Source Code Control System) is a set of HP-UX commands that enable you to:

• Track all changes made to a text file;

• Retrieve the current (latest) version of a file;

• Retrieve any previous version of a file, ignoring any changes made to the original after a
given revision;

• Control who changes a file;

• Keep track of the date and location of each change made to a file along with the name of
the person making the change;

• Add comments when each change is made indicating the reason for that change.

One application of SCCS is to keep track of source files during the development and maintenance
of large systems. This article is directed towards this use of sees; however, it can be used in any
project that involves supporting groups of related text files. Object code cannot be maintained
under secs.

Once you store a program's source file under sees, all of its versions, plus additional log
information, are kept in a file called the "s-file". SJiles are also referred to as "sees files" and
must have a "s." prefix on their name. There are three major operations you can perform on
the s-file:

1. Get a file for some non-editing purpose, such as compilation. This operation retrieves a
version of the file from the s-file that is read-only. By default, the latest version of the file
is retrieved. This file is specifically NOT intended to be edited or changed in any way;
any changes made to a file retrieved in this way will probably be lost.

2. Get a file for editing. This operation also retrieves a version of the file from the s-file,
but this file is intended to be edited and then incorporated back into the s-file. Only one
person may be editing a particular version of an s-file at a time (unless you have specifically
allowed concurrent edits on the same version).

3. Merge a file back into the s-file. This is the companion operation to (2). A new version
number is assigned, and comments are saved explaining why this change was made.

sees User's Guide 1

Terms
You need to understand several terms before using sees.

S-files
An s-file is a single file that holds all the different versions of your file. The s-file is stored in
differential format; only the differences between versions are stored, rather than the entire text
of the new version. This saves disk space and allows selective changes to be removed later. Also
included in the s-file is some header information for each version, including the comments given
by the person who created the version explaining why the changes were made. A description
of what this header information includes is presented later in this article.

Deltas
Each set of changes to the s-file (which is approximately equivalent to a version of the file) is
called a delta. Although technically a delta only includes the changes made, in practice it is usual
for each delta to be made with respect to all the deltas that have occurred before. This matches
normal usage, where the previous changes are not saved at all, so all changes are automatically
based on all other changes that have happened through history. However, it is possible to get a
version of the file that has selected deltas removed out of the middle of the list of changes. All
of the deltas of a file maintained under sees are stored in an s-file.

SIDs (Version Numbers)
A SID (sees ID) is a number that represents a delta. This is normally a two-part number
consisting of a "release" number and a "level" number. The form of two-part SIDs is:

release. level

where "release" and "level" are non-zero, positive integers. Normally the release number stays
the same while the "level" increments with each delta. However, you can move into a new
release of a file if some major change is being made. Since all past deltas are normally applied
when version is retrieved, the SID of the final delta applied is used to represent the version
number of the file as a whole.

Deltas applied to one sees file can be considered nodes of a tree, the initial version of the file
being the root node. The root delta (node) normally has the SID number "1.1" and the deltas
that follow are "1.2", "1.3", etc. The naming of successor deltas by incrementing the SID level
number is performed automatically by sees when you retrieve a file for editing with get -e,
although the delta itself is not created until you execute delta.

2 sees User's Guide

The following diagram illustrates the development of an sees file where each delta depends on
all of the previous deltas.

1 .1 ----+ 1.2 ----+ 1.3 ----+ 2. 1----+ 2.2

t
A New Release

ID Keywords
When you retrieve a version of a file from sees with intent to compile it (or rather, do something
other than edit it), some special keywords are expanded by sees when they are found in the
file. These ID keywords can be used to include the current version number or other information
into the file. All ID keywords are of the form %x%, where "x" is an upper case letter. For
example, %1% is the SID of the latest delta applied in retrieving a particular version, %W%
includes the module name, SID, and a string of characters that makes it findable by the what
command, and %G% is the date of the latest delta applied. A list of all of the ID keywords can
be found in the Quick Reference section at the end of this article and in the entry for get in the
HP-UX Reference.

For example, assume that you have a source file stored under sees and it contains the line of
code:

static char Sccsld[] = II%W%II;

When you retrieve the file for editing, the text file will contain the line just as it appears above.
However, when you retrieve the file for compilation the % W% is expanded to indicate the module
name, SID, and the string of characters recognized by what:

static char Sccsld[] = 1I(Q(#)prog.c 1.2 05/15/84 11
;

The what command is a valuable tool for quickly finding out information about a particular version
of a program. To use it the program's source code must be contained in sees files. In the
sees files, any string of information that you want to be accessed by what must begin with the
ID keyword %2%. (%W%, mentioned earlier, is actually a combination of several ID keywords,
including %2%.) When the files are retrieved for compilation, this ID keyword is expanded to
the string: @(#). When you invoke what on a file, the command prints out anything it finds
between this string and the first ", >, \' newline, or null character. Refer to the section "Using
ID Keywords" for more information about what.

sees User's Guide 3

When you retrieve a file for editing, the ID keywords are not expanded; this is so that after you
store the file back into sees, they can still be expanded automatically when the file is retrieved
for compilation. If you edit and store a version of a file in which the ID keywords are expanded,
sees can no longer control the updating of the ID keywords' values. For example, if you use
the ID keyword for the file's version and then store the keyword's expanded value, all of the
following versions will indicate that same version number - sees can not increment it. Also,
if you compile a version of the program without expanding a version number ID keyword that
appears in it, it is impossible to tell what version it is since all that the code will contain is "%1%".

Creating SCCS Files
To put source files into sees format,use the admin command. The following stores a file called
"s.file" under sees:

admin -ifile s.file

The -i keyletter indicates that admin is to create a new sees file (called an s-file) and "initialize"
its contents with the contents of the file "file". The "s.file" argument is the name of the s-file.
All s-file names must begin with "5.". The initial version of s.file is a set of changes (delta
1.1) applied to a null s-file.

After creating a new s-file, admin returns the message:

No id keywords (cm7)

if you have not included any ID keywords in it. This is just a warning message and it is discussed
further in a later section.

Since you have stored the contents of "s.file" under sees, you can now remove the original file:

rm file

Note that if the name of the sees file is the same as the original text file except for the "s."
prefix, then original file must be removed or moved to another directory. This is because when
you retrieve a version of an sees file, the name of the resulting text file is the sees file
name with the "s." removed. If there is already a writeable file with this name in your current
directory, sees does not allow you to retrieve the sees file version in most cases.

4 sees User's Guide

Assume that your current HP-UX directory contains several e source files that you want to
maintain under sees. The following shell script stores each under sees with the required "s."
prefix added onto its name and removes the original source files.

for i in *.C
do

done

admin -i$i s.$i
rm $i

If you want to have ID keywords in the files, it is best to put them in before you create the
s-files. If you do not, admin prints "No Id Keywords (cm 7)" after each s-file is created. If you
create an s-file without ID keywords and then later decide to add them, merely retrieve the file
for editing, add the ID keywords, store the changes, and then state that ID keywords have been
added when you are prompted for comments.

Removing sees Files
In order to protect s-files, sees does not supply a direct method of removing them from your
system. S-files are protected from accidental deletion in two ways:

• They are created as read-only files .

• There is no sees command that removes them.

Because of this protection, you must make the files writeable before you can remove them. Use
chmod to change the access permission on an s-file:

chmod +w s.file

The "+w" indicates that you are adding write access to the file "s.file". Once you have a
writeable s-file, you can remove it with:

rm s.file

sees User's Guide 5

Getting Files for Compilation
To get a copy of the latest version of the sees file "s.file", type:

get s.file

Get responds, for example, with:

1.1
87 lines

indicating that version 1.1 was retrieved and that it has 87 lines. The retrieved text is placed
in a file in the current directory whose name is formed by deleting the "s." prefix. The file is
read-only to remind you that you are not supposed to change it. If you do make changes, they
are lost the next time someone does a get.

To retrieve all of the sees files in a directory so that they can be compiled, specify the directory
name as an argument to get:

get directory

The retrieved text files are place in your current directory and any non-SeeS files (files without
the "s." prefix) in the directory are silently ignored.

Note that if the s-file (or the directory containing s-files) that you want to access is not located
in your current directory you must specify its full pathname.

6 sees User's Guide

Changing Files (Creating Deltas)

Getting a Copy to Edit
To edit a source file, you must first use get with its -e (e for edit) keyletter to retrieve it:

get -e s.file

Get responds:

1.1
87 lines
New delta 1.2

The retrieved file "file" (without the "s." prefix) is placed in your current directory and you have
read and write access to it. Edit the file using a standard text editor, for example vi:

vi file

To retrieve all of the sees files in a directory for editing, specify the directory name as an
argument to get -e:

get -e directory

Merging the Changes Back Into the S-File
When the desired changes have been made to the text file, you can store the changes in the
sces file using the delta command:

delta s.file

assuming that the s-file is located in your current directory. If it is located in a different directory
you must specify a pathname for the s-file. Delta prompts you for "Comments?" before it
merges the changes in. At this time you should type a one-line description of what the changes
mean (more lines can be entered by ending each line except the last with a backslash \). Delta
then responds, for example, with:

1.2
5 inserted
3 deleted
84 unchanged

secs User's Guide 7

saying that delta 1.2 was created, and it inserted five lines, removed three lines, and left 84
lines unchanged. (Changes to a line are counted as a line deleted and a line inserted.) Finally,
sees removes "file" from your current directory; you can retrieve it again using get.

Note that the comments that you are prompted for are not maintained as part of the text body
of the s-file, but are kept in another section of the s-file that is used internally by sees.

When To Make Deltas
It is probably unwise to make a delta before every recompilation or test, unless other people may
need to edit the file at the same time. Creating too many deltas may result in unclear comments,
such as "fixed compilation problem in previous delta" or "fixed botch in 1.3". However, it is
very important to delta everything before installing a module for general use. A good technique
is to edit the files you need, make all necessary changes and tests, compiling and editing as often
as necessary without making deltas. When you are satisfied that you have a working version,
delta everything being edited, re-get them, and recompile everything.

Working on a project with several people presents a problem when two people need to modify a
particular version of a file at the same time. sees prevents this by locking the version while it is
being edited (unless concurrent editing of one version has been specifically allowed). This means
that you should not retrieve a file for editing unless you are actually going to edited it at the
time, since you will be preventing other people on the project from making necessary changes.
As a general rule, all source files that you are editing should be stored with delta before being
used in compilations. This gives other users a better chance of being able to edit files when they
need to.

What's Going On: The Sact Command
To find out who is currently editing an sees file, use:

sact s.file

For each editing session taking place on the file, sact (SeeS activity) tells you which SID (version)
is being edited, what SID will be assigned to the new delta when editing is done, who is doing
the editing, and the data and time that editing began (when get -e was invoked). If no one is
editing "s.file", sact returns an error message telling you that a p-file does not exist for the file
(the "Types of Files" section later in this tutorial discusses p-files).

You can specify more than one sees file name as arguments to sact; each file is checked one
at a time. You can also specify a directory, in which case sact checks every sees file in that
directory and Silently ignores non-SeeS files (files without the "s." prefiX).

8 sees User's Guide

Using ID Keywords
ID keywords inserted into your file are expanded when you retrieve a file for compilation with
get. They record information about the file, such as the time and date it was created, the version
retrieved, and the module's name. For example, a line in an sees file such as:

static char SccsldD = "%W%\t%G%";

is replaced with something like:

static char Sccsld[] = "(D(#)prog.c 1.2 08/29/80";

in the retrieved source file. This tells you the name and version of the source file and the time
the delta was created. The string "@(#)" is the expanded form of the keyword %2% and is
searched for by the what command (the %W% ID keyword shown above is shorthand for several
other ID keywords including %2%). It enables you to quickly locate expanded ID keywords in text
files using what. Note that when you retrieve a file for editing the keywords are not expanded.
This is so that they will still be in their original form when you store the file again with delta.

Approximately 20 ID keywords are available for use in sees files. The "Quick Reference"
section at the end of this tutorial contains a list of them, and a list can also be found under the
entry for get in the HP-UX Reference.

The What Command
When %2% is used, expanded ID keywords in files can be located using what. To find out the
current version number of a source file and what version of it is used in an object file and final
program (assuming you have previously inserted the necessary ID keywords in the sees source
file), use:

what file.c file.o a.out

What prints all strings it finds that begin with "@(#)" in the three files. It works on all types of
files, including binaries and libraries. For example, the above command outputs something like:

file.c:
file.c 1.2 08/29/80

file.o:
file.c 1.1 02/05/79

a.out:
file.c 1.1 02/05/79

From this you see that the source in "file.c" does not compile into the same version as the binary
in "file.o" and "a.out".

sees User's Guide 9

What searches the given files for all occurrences of the string "@(#)", which is the replacement
for the %Z% ID keyword, and prints what follows that string until the first double quote ("),
greater than (», blackslash (\), newline, or (nonprinting) NUL character. Note that you can
locate and display constant text as well as ID keywords with what if you precede that text with
%2%.

For example, assume an sees file "s.prog.c" contains the following line:

char id [] "%Z%%M%: %I%;

Note that the colon (":") is not part of an ID keyword. It is left unchanged when the ID keywords
are expanded. Next, the command line:

get s.prog.c

is executed. The retrieved file "prog.c" is then compiled to produce "prog.o" and "a. out" . J The
command:

what prog.c prog.o a.out

produces:

prog.c:
prog.c:1.2

prog.o:
prog. c: 1.2

a.out:
prog. c: 1.2

indicating that version 1.2 of the file "prog.c" was used in all three files.

Where to Put Id Keywords
ID keywords can be inserted anywhere in sees files, including comments. ID keywords that are
compiled into the object module are especially useful, since they let you compare what version
of the object is being run to the current version of the source.

When you put ID keywords into header files, it is important that you assign them to different
variables. For example, you might use:

static char AccessSid [] = "%W% %G%";

10 sees User's Guide

in the file "access.h" and:

static char OpsysSid[] = "%W% %G%";

in the file "opsys.h". If you used the same variable name in both, you get compilation errors
because the variable is redefined. You should also be aware that if you place ID keywords in
a header file as code that is eventually compiled and then included that header file in several
modules that are loaded together, the same version information will appear several times in the
resulting object module. A solution is to insert header file's ID keywords as comments.

Creating New Releases
When you want to create a new release of a program, you can specify the new release number
using get's -r keyletter. For example:

get -e -r2 s.prog.c

retrieves the release 1 's latest version of "s.prog.c" and causes the next delta to be in release 2
(an SID of 2.1). Future deltas are automatically in release 2.

To assign a new release number for all of the sees files in a directory, use:

get -e -r2 directory

assuming that the previous release was release 1, and then execute:

delta directory

All of the sees files in the directory are assigned a new delta SID of 2.1

sees User's Guide 11

Cancelling an Editing Session
If you retrieve a file for editing with get -e and then decide that you do not want to edit it, cancel
the editing session with:

unget a.file

Unget returns the SID of the cancelled delta. Only the person who began an editing session can
cancel it. Unget can accept more than one file name argument or, alternatively, use:

unget

in which case unget accepts file names from standard input.

If you are currently editing a number of sees files in one directory and want to cancel all of the
editing sessions for them, you can specify the directory:

unget directory

In this case unget checks every sees file in the directory. If one of the files is not currently
being edited, unget returns an error message indicating that its associated p-file does not exist
(see "Files Used by sees" section later in this tutorial).

If you are currently editing more than one version of a file, unget's -r keyletter allows you to
specify which version's editing session you want to cancel:

unget -r2.3 a.file

If you find that you retrieved a file for editing when actually you needed for some other purpose,
you would like to cancel the editing session but keep the file in the current directory. Normally
when you cancel an editing session, unget removes the retrieved text file from the current
directory. You can request that it not be removed with the -0 keyletter:

unget -n a.file

This leaves the text file "file" still available for inspection or compilation, but any changes made
to the file cannot be stored back in the sees file by using delta; and no ID keyword expansion
occurs, making identification by using the what command impossible.

You can request that unget execute silently (not print out the file's cancelled delta's SID) by using
the command's -s keyletter:

unget -a a.file

12 sees User's Guide

Restoring Old Versions
This section discusses how get's -r, -x, and -j keyletters are used to retrieve various versions of
a file. They can be used in any combination. The -e keyletter can also be used with them to
create a new delta based on particular versions.

Reverting to Old Versions
Normally, get retrieves the latest version of the specified file. However, you can request a
particular version using get's -r keyletter.

Suppose that after delta 1.2 was stable you made and released a delta 1.3. However, this
introduced a bug, so you made a delta 1.4 to correct it. Then you found that 1.4 was still
buggy, and you decided you wanted to go back to the old version. You can access delta 1.2 by
choosing the SID in a get:

get -r1.2 s.prog.c

This produces a version of "prog.c" that is delta 1.2. Any changes that you made between delta
1.2 and the most recent delta are ignored.

If you specify a release number but not a level number, the highest level number that exists within
that release is retrieved. Get -r also allows you to retrieve particular branch deltas. Branches
are discussed in the section "Maintaining Different Branches" later in this article.

If you try to retrieve for compilation a particular version that does not exist, sees responds
with an error message. There is one exception: if you specify only a release number and that
release doesn't exist, sees retrieves the delta with the highest release number that does exist,
and with the highest level number within that release.

In some cases you don't know what the SID of the delta you want is. However, get allows you
to revert to the version of the program that was running as of a certain date using its -c (cutoff)
keyletter. For example,

get -c840722120000 prog.c

retrieves whatever version was current as of July 22, 1984 at 12:00 noon. Trailing components
can be stripped off (defaulting to their highest legal value), and punctuation can be inserted in
the obvious places; for example, the above line is equivalently stated with:

get -c"84/07/22 12:00:00" prog.c

sees User's Guide 13

Selectively Excluding Old Deltas
Suppose that you later decided that you liked the changes in delta 1.4, but that delta 1.3 should
be removed. You could do this with the -x keyletter:

get -e -x1.3 s.prog.c

When delta 1.5 is made, it includes the changes made in delta 1.4, but excludes the changes
made in delta 1.3. You can exclude a range of deltas using a dash. For example, if you don't
want to include 1.3 and 1.4 you can use:

get -e -x1.3-1.4 s.prog.c

which excludes all deltas from 1.3 to 1.4. Alternatively,

get -e -x1.3-1 prog.c

excludes a range of deltas from 1.3 to the current highest delta in release 1.

In certain cases when using the -x keyletter (or -i, see below) there are conflicts between versions.
For instance, it may be necessary to both include and delete a particular line, in which case sees
always prints out a message telling the range of lines affected; these lines should then be examined
very carefully to see if the version sees got is correct.

Since each delta (in the sense of "a set of changes") can be excluded at Will, it is usually useful
to put each semantically or conceptually distinct change into its own delta.

Selectively Including Deltas
Just as get's -x keyletter allows you to exclude deltas from a version in which they are normally
included, the -i allows you to include deltas that are not normally included.

For example, assume that you have an sees file containing five deltas, 1.1 through 1.5. To
retrieve a version of a file containing only deltas 1.1, 1.3, and 1.5, request that version 1.1 be
retrieved and force the inclusion of deltas 1.3 and 1.5:

get -r1.1 -i1.3.1.5 s.file

14 sees User's Guide

To retrieve version 1.5 all of the deltas must be used. All of the following get command lines
accomplish this.

get -rl.5 -il.2 a.file

get -rl.5 a.file

get a.file

Note that the -i keyletter in the first command line has no effect since delta 1.2 is already used
to construct version 1.5. The -r keyletter is not required either since delta 1.5 is the most recent
delta and, by default, get retrieves the version incorporating it.

If there are conflicts between versions when you use the -i key letter , sees provides a message
indicating the range of lines affected, just as it does when the -x keyletter is used. You should
examine these lines in the retrieved file to make sure that they are correct.

Removing Deltas
Get -x allows you to exclude deltas from the retrieved file; however, the deltas are not removed
from the sees file and the information they contain is still available and consuming space. To
permanently remove a delta from an sees file, use rmdel. Rmdel requires that you use the -r
keyletter to specify which delta is removed:

rmdel -rl.3 a.file

Before you can use rmdel to remove a delta, all of the following requirements must be met:

• The specified version of the file is not currently being edited;

• the SID must be the most recent delta on its branch of the delta chain for the named file:
no other deltas can depend on it;

• You originally created the delta or you are the owner of the sees file and the directory
that it is in.

sees User's Guide 15

The Help Command
Error messages returned by the sees commands have the form:

ERROR : message (code)

If it is not clear from "message" why the error occurred, use the associated "code" as an
argument to the help command. Invoking:

help code

often provides a little more explanation about the cause of the error. For example, if you execute
"get program" you could receive the following message:

ERROR [program] : not an sees file (co1)

Executing:

help co1

produces:

co1:
"not an sees file"
A file that you think is an sees file
does not begin with the characters "s.".

16 sees User's Guide

Auditing Changes

The Prs Command
When you create deltas, you presumably give reasons for the deltas in response to the "com­
ments?" prompt. To print out these comments later, use:

prs s.file

Note that prs provides information about each of the deltas used to create the requested version
of the file; therefore, it is a way to list the deltas upon which a particular version depends. It
produces a report for each delta providing the time and date of creation, the user who created
the delta, and the comments associated with the delta. For example, the output of the above
command might be:

s.file:

D 1.3 84/04/12 08:21:35 becky 3 2 00020/00008/00021
MRs:
COMMENTS:
inserted 20 lines, removed 8 lines, 21 lines unchanged

D 1.2 84/04/11 09:21:08 becky 2 1 00008/00000/00021
MRs:
COMMENTS:
inserted 8 lines, 21 lines unchanged

D 1.1 84/04/10 06:37:14 becky 1 0 00021/00000/00000
MRs:
COMMENTS:
date and time created 84/04/10 06:37:14 by becky

The report indicates that the file's initial delta (created with admin -i) inserted 21 lines, delta 1.2
inserted 8 lines and left 21 unchanged, and delta 1.3 inserted 20 lines, removed 8 lines, and
left 21 lines unchanged.

You can request information about a particular version of a file using prs's -r keyletter:

prs -r2.3 s.prog.c

sees User's Guide 17

Prs can accept multiple file names or directory names as arguments. If you request information
about all of the sees files in a directory, you should probably redirect prs's output to a file and
look at it at your leisure:

prs directory > output

When a directory is specified, the effect is as if each sees file it contains were named and any
non-SeeS files are ignored.

Prs also allows you to modify the information it provides using its -d keyletter. For example,

prs -d " Delta :1: Date :D:" s.prog.c

will list just the sees ID string of the file along with the date the delta was created. Refer to
the prs entry in the HP-UX Reference to see how this is done.

Determining Why Lines Were Inserted
To find out why you inserted various lines in a file, you can get a copy of the file with each line
preceded by the SID of the delta that created it using:

get -m s.prog.c

where the retrieved copy is called "prog.c". Once you have determined which delta inserted
the line you are interested in, use prs to find out what that particular delta did by looking at its
comment line.

Another way to find out which lines were inserted by a particular delta (e.g., 1.3) is:

get -m -p s.prog.c I grep '-1.3'

The -p flag causes get to output the retrieved text to the standard output rather than to a file.

Comparing Versions
To compare two versions of a file, use sccsdiff. For example,

sccsdiff -rl.3 -rl.6 s.prog.c

outputs the differences between delta 1.3 and delta 1.6 in a format similar to the format used
by the diff command.

You can specify any number of file names with sccsdiff but the same two SID's specify which
versions are compared for all of them. You can not specify a directory as an argument.

18 sees User's Guide

Files Used by sees
As a user of sees, you do not need to know all of the information covered in this section;
however, it should give you a feel for the inner workings of sees.

There are 8 types of files that are used by sees and all of them are AS ell text files. They are:

S-files

G-files

L-files

P-files

D-files

Q-files

X-files

Z-files

sees files created by admin -i.

Text files containing the "body" of sees files and created by get.

Files containing delta dependency information and created by get -I.

Files created and used by sees to keep track of multiple edits.

Temporary files created and used by sees during the execution of delta.

Temporary files created and used by sees to update p-files.

Temporary files created and used by sees to update s-files.

Lock-files created and used by sees to prohibit simultaneous updating of s-files.

Normally, only 4 of these file types are visible to users of sees: s-files, g-files, I-files, and p-files.
The remaining 4 types are temporary flIes used internally by sees during the execution of
particular commands.

S-Files
S-files are often referred to as sees files in this tutorial. They contain all of the versions of files
you are maintaining under sees. You create and name an s-file when you initially enter a file
into sees:

admin -ifile s.file

"s.file" is the new s-file and "file" can now be removed. Accessing a file maintained under sees
using sees commands is done using its s-file name. S-file names must begin with the prefix
"5.".

sees User's Guide 19

The Contents of the S-File
S-files are composed of lines of ASCII text arranged in the following 6 parts:

Checksum

Delta Table

A line containing the "logical" sum of all the characters of the file, not
including the checksum itself.

Information about each delta, such as type, SID, data and time of cre­
ation, and user inserted comments.

User Names A list of login names and/or group IDs of users who are allowed to
modify the file by adding or deleting deltas. You modify it using admin.

Flags Indicators that control certain actions of various secs commands. You
modify them using admin.

Descriptive Text Arbitrary text provided by the user; usually a summary of the contents
and purpose of the file. You modify it using admin.

Body The actual text that is being administered by sees, intermixed with
internal sees control lines. You modify it using get -e and delta.

You modify the Body section of the s-file whenever you create or delete deltas. You modify
the User Names, Flags, and Descriptive Text sections using the admin command (see the "Using
Admin" section later in this article). The Checksum and Delta Table are modified internally by
secs.

Since the entire contents of an s-file is ASCII, the file can be processed with various HP-UX
commands, such as vi, grep, and cat. This is convenient but somewhat risky in those instances
in which an sces file must be modified manually (e.g. when the time and date of a delta were
recorded incorrectly because the system clock was set incorrectly) or when you simply want to
look at its contents.

NOTE

If you modify the sees file directly (instead of with secs commands),
the Checksum value may be incorrect, causing you to receive an error
whenever you try to retrieve a version of the file. This problem is
discussed in a later section, "Restoring the S-File". You should not edit
an s-file directly unless you completely understand its format.

20 sees User's Guide

Q·Files
The get command creates a text file that contains a particular version of the file under sees
control. This text file is called a g-file and its name is formed by removing the sees file's "s."
prefix. It is this file that you use for inspection, compilation, or editing purposes.

G-files are created in the current directory and are owned by the real user. Their file mode
depends on how get is invoked. If you use:

get s.file

the resulting g-file "file" has mode 444 (read only) and is produced for inspection or compilation,
but not for editing. Note that any 10 keywords in the file are expanded to their appropriate
values.

If you use:

get -e s.file

then "file" can be edited. Note that any 10 keywords in the file are not expanded, allowing them
to be stored back in the file when you use delta.

L·Files
When you retrieve an sees file with get, you can request that an I-file be created using the
command's -I keyletter:

get -1 s.file

The name of an I-file is formed by replacing the "s." prefix of the sees file with "1.". It contains
a table indicating what deltas were used to create the retrieved version of an sees file. You
must specifically request the creation of I-files with -I; by default get does not create them.

To send delta dependency information to standard output instead of placing it in an I-file, use:

get -r2.3 -lp s.file

sees User's Guide 21

P-Files
When you retrieve an sees file for editing (get -e), besides creating a writeable g-file containing
the version's text, a p-file is also created. The name of a p-file is formed by replacing the "s."
prefix of an sees file with "p.".

P-files are used internally by sees to keep track of multiple edits on the same sees file (see
"Concurrent Editing"). For each edit that is in progress on a particular sees file (get -e has
been executed but not the associated delta), the file's p-file keeps track of:

• SID of the retrieved version;

• SID that will be given to the new delta when delta is executed;

• Login name of the user that executed get -e;

• Date and time that the get -e was executed.

If a p-file is aCcidentally destroyed, it can be regenerated with:

get -e -g s.file

The "-e -g" combination suppresses the retrieval of a writeable text file (g-file), but the associated
p-file is created. A p-file must exist for an sees file before you can use delta on it.

When you request information with the sact command, you are presented with data from a p-file.

D-Files
D-files are used internally by sees during the execution of delta to hold a temporary copy
of the original retrieved g-file before any editing was done. The name of a d-file is formed by
replacing the "s." prefix of the associated sees file with "d.". When you retrieve an sees file
for editing (get -e) and then invoke delta, sees creates a d-file and compares the edited g-file
with the contents of the d-file to determine what has changed. These changes are then stored
in the sees file (s-file).

When you invoke delta, you can request that the differences between the d-file and the g-file (the
file that you retrieved and the file that you are now storing) be sent to standard output using:

delta -p s.file

Once delta is executed, you can request the same information with the sccsdiff command.

22 sees User's Guide

Q-Files
A q-file is a temporary copy of a p-file that is used internally by sees. Its name is formed
by replacing the "p." prefix of the p-file with "q.". Whenever a p-file needs to be updated
(because editing of a version of a file was completed with delta or started with get -e), a q-file
is first created. The change is made to the q-file and then the p-file is removed and the q-file is
renamed to become the new p-file. This strategy is used to ensure the integrity of the p-file in
case there are any problems adding or deleting entries from the table.

X-Files
An x-file is a temporary copy of an s-file that is used internally by sees. All sees commands
that modify an sees file do so by first creating and modifying an x-file. This ensures that the
sees file is not damaged if the processing terminates abnormally. The name of this temporary
copy is formed by replacing the "s." prefix of the sees file with "x.". When' processing is
complete, the old s-file is removed and the x-file is renamed to be the s-file.

Z-Files
Z-files are lock-files sees uses to prevent simultaneous updating of an sees file. They are
discussed later in this article in the section "sees Protect Facilities".

sees User's Guide 23

Concurrent Editing

Concurrent Edits on Different Versions
sees allows different versions of one sees file to be edited at the same time. This means that
a number of get -e commands can be executed on the same file provided that no two executions
retrieve the same version, unless concurrent edits on the same version are allowed (see the
discussion in the next section).

sees uses a p-file to keep track of the edits that are in progress on one file. The first execution
of get -e causes the creation of a p-file for the specified sees file. Subsequent executions of the
command update the p-file, adding entries in the file for each edit session that is in progress.
Each entry in the p-file specifies the SID of the retrieved version, the SID that will be assigned
to the new delta, and the login name of the person doing the editing. When an editing session
is terminated (with delta or unget), the corresponding entry in the file's p-file is removed. If no
other versions of the file are currently being edited, then the p-file itself is removed.

Before sees allows an editing session on a particular version of an sees file to begin, it makes
sure that if a p-file for the file already exists there is no entry in it specifying that the version
has already been retrieved. If there is no entry with that SID, sees adds an entry for the new
editing session. If there is an entry with the same SID, sees generates an error message and
does not allow the version to be retrieved for editing (unless multiple edits of the same version
are allowed). sees informs you if editing is currently being done on another version of the file
you request to edit.

NOTE

Multiple executions of get -e must be done from different directories. This
is because each time any version of one file is retrieved, the resulting
g-file (text file) is assigned the same name. As a result, sees prohibits
multiple edits on the same file in the same directory because the g-file
would constantly be overwritten.

In practice, multiple editing sessions are performed by different users
with different working directories; therefore, this restriction normally
does not cause a problem.

24 sees User's Guide

Concurrent Edits on the Same Version
By default, sees does not permit multiple executions of get -e on the same version of one
sees file. Each editing session on a version begun with get -e must be ended with delta before
another session can begin. However, you can change this and allow concurrent edits on the
same version of a file by setting the file's j flag with the admin command (see the "Using Admin"
section later in this article).

Note that if you do set a file's j flag, multiple editing sessions on the same version must be done
in different directories, just like multiple edits on different versions.

Saving Yourself

Making Temporary Changes
If you use get -e to retrieve a file so that you can edit it, sees requires that you delta the
changes that you make back into the associated s-file. Sometimes, however, it is necessary to
make modifications to a file that you do not want saved.

To make temporary changes to a file possible, retrieve it from sees with:

get s.file

sees does not expect changes to be made to the file; therefore, it gives it read-only access.
You must now change the mode of the file so that you can edit it:

chmod +w file

Chmod +w adds write access to a file. Any changes that you now make to "file" cannot be
stored in sees.

sees User's Guide 25

Recovering an Edit File
Sometimes you may find that you have lost a file that you were trying to edit. Unfortunately,
you can't just execute get -e again; sees keeps track of the fact that someone is trying to edit
that version, so it won't let you do it again. Neither can you retrieve it using get, since that
would expand the ID keywords. Instead, you can say:

get -k prog.c

This retrieves the file and does not expand the ID keywords, so it is safe to do a delta with it.

Restoring the S-File
You may find that the sees file itself is corrupt. The most common way this happens is when
someone edits the file directly, not through the sees commands. sees keeps a checksum that
contains the "logical" sum of all of the characters in the file. If you modify the sees file directly
the checksum may have the wrong value. No sees command will process a corrupted sees
file except admin -h and admin -z as described below.

You should audit all sees files for corruption on a regular basis. The simplest way to do this
is to execute admin with its -h keyletter on all of the sees file:

admin -h s.file1 s.file2 ...

or:

admin -h directory

This checks to see if each file's checksum is correct. The message "corrupted file (c06)" is
produced for a file whose checksum is not correct.

If you have a corrupted sees file, you must first determine why its checksum is incorrect. If it
is due to someone having directly modifying the file, the problem is often corrected by merely
recomputing the checksum. Do this with admin's -z keyletter:

admin -z prog.c

The checksum is recomputed to bring it into agreement with the actual contents of the file.

26 sees User's Guide

NOTE

Before you use admin -z you must find and correct the corruption prob­
lem. This is because once the checksum is recomputed, the corruption
is no longer detectable. Admin -z does not find or fix the problem, it
merely recomputes the checksum.

Using the Admin Command
Admin is used to create new sees files and change parameters of existing ones. When an
sees file is created, its parameters are either initialized with key letters or are assigned default
values if no keyletters are specified.

Newly created sees files are given mode 444 (read-only) and are owned by the effective user.
Only a user with write permission in the directory containing the sees file can use admin on it.

Creating SCCS Files
As discussed earlier, an sees file for a file called "prog" is created with:

admin -iprog s.prog

The name of the sees file is "s.prog". If no file name is specified with the -i keyletter, the text
is read from standard input:

admin -i s.prog <prog

When the sees file is created, the release number assigned to its initial delta is normally "I"
and the level number is always "1", meaning that the first delta of the file is "1.1". You can
assign a different initial release number using admin's -r keyletter when the file is created:

admin -iprog -r3 s.prog

Here, the initial delta is "3.1".

sees User's Guide 27

Adding Comments to Initial Delta
When you create an sees file, you can supply a comment stating the reason for the creation
of the file. This is done with the -y keyletter:

admin -ifile -y"The reason this file was created" s.file

If you do not specify an initial comment with -y, sees gives the inital delta a comment line with
the form:

date and time created YY/MM/DD HH:MM:SS by logname

Descriptive Text in Files
A portion of an sees file is reserved for descriptive text, text that summarizes the content and
purpose of the sees file. When you are creating an sees file you can insert descriptive text
using admin's -t keyletter followed by the name of a file containing the text:

admin -ifile -tdescrip s.file

You can either add descriptive text to an existing sees file or replace the descriptive text it
already contains with:

admin -tnew_descrip s.file

where "new_descrip" is the name of the file containing the descriptive text. To remove descriptive
text from an sees file, use -t without a file name:

admin -t s.file

To see the descriptive text for an sees file, use prs as follows:

prs -d:FD: s.file

Prs's -d keyletter allows you to specify what information about the file that you want returned.
The ":FD:" indicates that you want to see the file's descriptive text. Refer to the HP-UX
Reference manual entry for prs for more information about the command's -d keyletter.

28 sees User's Guide

Setting sees File Flags
sees files have a number of parameters called flags that can be added and deleted using the
admin command. These flags are maintained in a particular section of sees files along with
their associated values where appropriate. Add flags with admin's -f keyletter and delete them
with its -d keyletter. For example:

admin -fd2.1 prog.c

sets the d flag to the value "2.1". This flag can then be deleted using:

admin -dd prog.c

The flags that you can add with admin -f or delete with admin -d are:

b

dSID

cceiling

ffloor

llist

Allow branches to be made using get -e -b.

Default SID to be used on a get. If this is just a release number, the default is
the highest version number for that release.

Sets the highest release number for a file that can be retrieved with get -e to
ceiling. Ceiling must be a number less than or equal to 9999. The default release
ceiling for a file is 9999.

Sets the lowest release number for a file that can be retrieved with get -e to floor.

Floor must be a number greater than 0 and less than 9999. The default release
floor for a file is 1.

Give a fatal error during get or delta if there are no ID keywords in a file. This is
useful to guarantee that a version of the file does not get merged into the s-file
that has the ID keywords inserted as constants instead of internal forms.

Allow concurrent edits on the same version (SID) of the sees file.

A list of releases that cannot be retrieved for editing (get -e). The list has the
following syntax:

<list> ::= <range> I <list>,<range>

<range> ::= RELEASE_NUMBER I a

The character a is equivalent to specifying all of the releases for the names sees
file. If you do not specify a list with the I flag, a is assumed by default.

To delete one or more "locked" releases with admin's -d keyletter you must also
use a list to specify which releases are to be "unlocked". For example, "admin
-dla s.file" unlocks all of the releases of s.file so that they can be edited.

sees User's Guide 29

n

qtext

mmodule

ttype

v[pgm]

Causes delta to create a "null" delta in each of those releases (if any) being skipped
when a delta is made in a new release (e.g. in making delta 5.1 after delta 2.7,
releases 3 and 4 are skipped). These null deltas serve as "anchor points" so that
branch deltas may later be created from them. If this flag is not set for a file,
skipped releases are non-existent in the secs file, preventing branch deltas from
being created from them in the future.

Replace all occurrences of the ID keyword %Q% with the contents of file text
when the sees file is retrieved for inspection or compilation. If the q flag has
not been set for a file, occurrences of %Q% are not replaced with anything.

Replace all occurrences of the ID keyword %M% with the specified module name
when the sees file is retrieved for inspection or compilation. If the m flag has
not been set for a file, occurrences of %M% are replaced with the name of the
sees file minus the "s." prefix.

Replace all occurrences of the ID keyword % Y% with the specified type when the
sees file is retrieved for inspection or compilation. If the t flag has not been set
for a file, occurrences of % Y% are not replaced with anything.

Causes delta to prompt for Modification Request (MR) numbers as the reason for
creating a delta. If you set this flag when you create an sees file, admin's -m
keyletter must also be specified, even if its value is null.

You can optionally specify an MR number validation checking program called
"pgm" with admin -fupgm.

Specifying Who Can Edit a File
Admin's -a keyletter ~llows you to specify who can edit an sees file. Use it as follows:

admin -alogin s.file

where "login" is a user's login name or an HP-UX group ID. If it is a group ID, the effect is
equivalent to specifying all login names common to that group ID. Several -a keyletters may be
used on a single admin command line.

Note that admin can accept one or more secs file names or directory names as arguments.
For example, the command line:

admin -abill -ajane -ajohn directory

30 sces User's Guide

gives HP-UX users bill, jane, and john editing priviledges to all of the sees files in the directory
"directory". The list of users for each sees file in the directory is updated to show this. No
one else can edit the sees files there unless specifically given the right with admin -a.

If no one has been assigned editing priviledges to a file with admin -a, the file's list of users is
empty and anyone can edit the file (as long as they have write access to the file's directory).

A user's ability to edit an sees file is removed with admin's -e keyletter. For example,

admin -ebill directory

removes bill from the list of users allowed to edit the sees files in "directory".

NOTE

Before a user can be prohibited from editing a file, the file's list of users
must be non-empty. If the list is empty everyone has editing priviledges
and using admin -e has no effect.

When a file's list of users is non-empty, any user not added to the list
with admin -a is already prohibited from editing the file. Thus, you can
remove a specific user's editing privileges only if you have previously
added him to the list of users with admin -e.

sees User's Guide 31

Maintaining Different Branches
Sometimes it is convenient to maintain an experimental version of a program for an extended
period while normal maintenance continues on the version in production. This can be done
using a "branch." Normally deltas continue in a straight line, each depending on the delta
before. Creating a branch "forks off" a version of the program.

For example, in the diagram be,low there is one branch delta having an SID of 2.1.1.1:

1 . 1 --+ 1.2 --+ 2.1 ----- 3. 1

L2.1.1.1

The ability to create branches off of the latest main "trunk" delta must be enabled in advance
by setting the file's b flag:

admin -fb prog.c

The b flag can also be set when the sees file is first created. It is not necessary to set a file's
b flag in order to create a branch off of an older delta.

Creating a Branch
To create a branch off of the latest main trunk version, use:

get -e -b prog.c

If the retrieved version has an SID of 1.5 and no branch was previously created on it, a branch
with SID 1.5.1.1 is created when the file is deltaed. The deltas for this branch are numbered
1.5.1.n where "n" increments by 1 with each delta.

If you retrieve an old version of an sees file for editing, secs automatically assigns a branch
SID to the new delta. The file's b flag need not be set to do this. For example, assuming that
the latest delta of prog.c is delta 1.5 you can create a branch off of delta 1.2 using:

get -e -rl.2 prog.c

secs will automatically number the new branch delta 1.2.1.1 if it is the first branch off delta
1.2.

32 sees User's Guide

Retrieving a Branch
Deltas in a branch are not normally included when you use get. To retrieve these versions, you
have to say:

get -rl.5.1 prog.c

specifying the requested branch's SID.

Branch Numbering
sees uses the following SID numbering scheme for recognizing branch deltas:

release. level. branch. sequence

"Release.1evel" is the SID of the delta on the main trunk from which the branch descends. A
"branch" number is assigned to each branch path that originates from a particular delta on the
main trunk. A "sequence" number is assigned to each delta on a particular branch. Branch
deltas always have all four of the above components in their SIDs and the release and level
numbers are always those of the ancestral main trunk delta.

When you retrieve a branch, specifying only the release, level, and branch components of the
SID returns the most recent version on a particular branch.

Although sees maintains enough internal information to remember delta dependencies of branch
deltas, the SID number itself does not always indicate all of the deltas between a branch delta
and its main trunk ancestor delta. For example, given delta 1.3.2.2 you know that the main
path ancestor is delta 1.3 and that it is the second delta (sequence=2) on the second branch
(branch=2) descending from delta 1.3. However, the diagrams below indicate two possible
development paths for delta 1.3.2.2:

Diagram 1:

1.3.1.2

(Branch 1) f (Branch 2)

1 .3. 1. 1 ---.. 1 .3.2. 1 ---.. 1 .3.2.2

I
.1 ---.. 1.2 ---.. 1.3 ---.. 2.1---" 2.2

sees User's Guide 33

Diagram 2:

1.3.1.2

(Branch 1) f
1.3.1.1

i
1 .1 ----. 1.2 ----. 1.3 ----. 2. 1----' 2.2

L 1 .3.2.1 -- 1.3.2.2

(Branch 2)

Note that in Diagram 1, version 1.3.2.2 is dependent on deltas 1.1, 1.2, 1.3, 1.3.1.1, and
1.3.2.1, while in Diagram 2 the delta with the same SID is dependent on 1.1, 1.2, 1.3, and
1.3.2.1.

A Warning
Branches should be kept to a minimum. After the first branch from the main trunk, SID's are
assigned rather haphazardly, and the structure gets complex very quickly.

34 sees User's Guide

sees's Protection Facilities
The protection facilities that sees provides for a system fall into two categories:

• general protection of files inherent to sees and that incorporates general HP-UX file
system protection by appropriately setting the modes of various files;

• specific system protection strategies that you control with the admin command.

General File Protection
New sees files created with admin are given mode 444 (read only). This mode prevents any
direct modification of the files by any non-SeeS commands. The mode of the files should not
be changed to allow direct modification.

sees files must have only one link (name) because of the way sees modifies the files. Com­
mands that modify sees files (delta, admin) create a copy of the file. The copy, called an x-file,
is modified, the original sees file is removed, and the copy is renamed. If the original sees
file has any links, they are broken when it is removed. sees generates an error message if you
try to process any file under sees that has multiple links.

To prevent simultaneous updates to sees files, when an x-file is created a lock-file, called the
z-file, is also created. A z-file contains the process number of the command that creates it, and
its existence is an indication to other commands that the sees file is being updated. Other
sees commands that modify sees files will not process an sees file if a corresponding z-file
exists. For example, assume that two people are editing two versions of an sees file. When
one of them executes delta, a z-file is created which keeps the second person from successfully
invoking delta. When delta has completed, the z-file is removed and the second person is free to
create his own delta. Z-files are created with mode 444 (read only) in the directory containing
the sees files and are owned by the effective user.

sees checks for the corruption of an sees file by maintaining a checksum. Whenever the file
is modified with an sees command, its checksum is updated to reflect the logical sum of the
number of characters the file has. Most sees commands will not allow you to access a file that
is corrupted. The admin command allows you check for corrupted file and to correct them.

sees files should be kept in directories that contain only sees files and any temporary files
created by sees commands. This simplifies protection and auditing of sees files since most of
the commands allow you to operate on all of the sees files in a directory by merely specifying a
directory name. The contents of directories should correspond to convenient logical groupings,
such as subsystems of a large project.

seCS·User's Guide 35

System Protection Using Admin
Admin allows the system administrator of a project to control five major areas of protection:

1. Prohibit concurrent editing of one version of a file;

2. Specify a list of users that have permission to edit a file;

3. Prohibit editing on particular releases;

4. Set range limits to what releases users can access;

5. Make the recognition of no 10 keywords in a file by sees commands a fatal error.

The admin command allows you to use these protection strategies on either a file-by-file basis
or on a directory basis. How this is done is discussed in a previous section "Using Admin".

36 sees User's Guide

Using sees With Make
If you are using make to create and maintain systems and are using sees to maintain the
source files for the systems, you can make the two work together by including sees commands
in make's makefiles. The following discussion assumes that you already know how to use make.
You can refer to its entry in the HP-UX Reference or the article on it in HP-UX Concepts and
Tutorials for information about it.

There are a few basic targets that most makefile should have. These are:

a.out

install

sources

clean

(or whatever the makefile generates.) This target entry regenerates whatever this
makefile is supposed to regenerate. If the makefile regenerates several interme­
diate things, this should be called "all" and should in turn have dependencies on
everything the makefile can generate.

Moves the objects to the final resting place, doing any special chmod's as appro­
priate.

Creates all the source files from sees files.

Removes unneeded files from the directory.

The clean entry should not remove files that can be regenerated from the sees files since it is
sufficiently important to have the source files around at all times.

Note that the examples of makefiles that follow are only partial and do not illustrate all of these
target entries fully. Also note that the example makefiles require that you execute make in the
same directory as the sees files.

sees User's Guide 37

To Maintain Groups of Programs
Frequently there are directories with several largely unrelated programs (such as simple com­
mands) and these can often be maintained by one makefile. For example, the makefile below
maintains "prog" and "example":

LDFLAGS= -i -s

prog: prog.o
$(CC) $(LDFLAGS) -0 prog prog.o

prog.o: prog.c prog.h

example: example.o
$(CC) $(LDFLAGS) -0 example example.o

example. 0: example.c

. DEFAULT:
get s.$<

Note that the source for the programs is maintained as sees files and that these files must
exist in the same directory as the makefile for the makefile to be able to retrieve them. The
.DEFAULT rule is called every time something is needed that does not exist, and no other rule
exists to make it. The explicit dependency of the .0 file on the .c file is important. Another way
of doing the same thing is:

SRCS= prog.c prog.h example.c

LDFLAGS= -i -s

prog: prog.o
$(CC) $ (LDFLAGS) -0 prog prog.o

prog.o: prog.h

example: example.o
$(CC) $ (LDFLAGS) -0 example example.o

sources: $(SRCS)
$(SRCS):

get s.$<O

There are some advantages to the second approach:

• the explicit dependencies of .0 files on .c files are not needed;

• there is an entry called "sources" so if you just want to get all the sources you can just
say "make sources";

• the makefile is less likely to do confusing things since it won't try to get things that do not
exist.

38 sees User's Guide

To Maintain a Library
Libraries that are largely static are best updated using explicit commands, since make doesn't
know about updating them properly. However, make can adequately handle libraries that are
in the process of being developed. One problem in maintaining libraries is that the object (" .o")
files must be kept out of the library as well as in the library.

configuration information
OBJS= a.o b.o c.o d.o
SRCS= a.c b.c c.c d.s x.h y.h z.h
TARG= /usr/lib

programs
GET= get
REL=
AR= -ar

lib.a: $(OBJS)
$(AR) rvu lib.a $(OBJS)

install: lib.a
cp lib.a $(TARG)/lib.a

sources: $(SRCS)
$(SRCS):

$(GET) $(REL) s.$~

print: sources
pr *. h *. [cs]

clean:
rm -f *.0
rm -f core a.out $(LIB)

The "$(REL)" in the $(SRCS) entry allows you to retrieve various versions of the sees files.
For example:

make REL=-ri.3

Note that for the install entry to execute properly, no one should be editing any of the sees
files when it is invoke&

secs User's Guide 39

To Maintain a Large Program
Consisder this example makefile:

OBJS= a.o b.o c.o d.o
SRCS= a.c b.c c.y d.s x.h y.h z.h

GET= get
REL=

a.out: $(OBJS)
$(CC) $(LDFLAGS) $(OBJS) $(LIBS)

sources: $(SRCS)
$ (SRCS) :

$(GET) $(REL) s.$~

(The print and clean entries are identical to the previous case.) This makefile requires copies of
the source and object files to be kept during development. It is probably also wise to include
lines of the form:

a.o: x.h y.h
b.o: z.h
c.o: x.h y.h z.h
z.h: x.h

so that modules are recompiled if header files change.

Since make does not do transitive closure on dependencies, you may find in some makefiles lines
like:

z.h: x.h
touch z.h

This would be used in cases where file z.h has a line:

#include "x.h"

in order to bring the date of z.h's last modification in line with the date of the last modification
of x.h (or rather, when the system thinks z.h was last modified). Alternatively, the effect of the
touch command can be achieved by doing a get on z.h.

40 secs User's Guide

Using sees on a Multi-User Project
This section describes the how sees is configured to maintain files for a large project that
involves several users. The person that configures and controls the sees files is called the
"sees System Administrator". You only need the information covered in this section if you are
your project's sees System Administrator.

If you plan to use sees on a project that involves several users, you must first develop a system
of controlling access to the sees files and commands. Thus far, this tutorial has only discussed
a one~user system, where that one user has write access to the directory containing the sees
files. The user has full use of all of the sees commands and can modify protected files (by first
making read-only files writeable).

As an sees System Administrator, you should provide an interface program that gives temporary
write access to the sees directory when users execute certain sees commands and and you
should restrict the users to read-only access at all other times. When sees files used on a project,
they are grouped in one directory (or more if necessary). The sees System Administrator is
the owner of the sees directory, has write access to it, and has full use of all of the sees
commands. Other users involved on the project should only have read access to the directory,
which means that they can not directly use the sees commands that require write access.

The sees interface program is a e program that provides a filter for the commands requiring
that the user have directory write access. If instead of using the interface program you give
all of the users write access to the sees directory, you greatly restrict the protection facilities
sees provides. Use of the interface provides users with only temporary write access when
they execute one of the commands. The two sees commands that require directory write
access and that must be available to the users through the interface program are get and delta.
Rmdel, cdc, and unget also require write access and can also be made available to users through
the program. The remaining sees commands either do not require write access to the sees
directory or are usually used only by the sees System Administrator (for example, admin).

sees User's Guide 41

How the SCCS Interface Works
The sees interface program invokes a specified sees command and causes the command's
process to inherit the privileges of the sees System Administrator for the duration of its
execution. This allows the process to obtain write access to the sees directory.

The names of the commands that you want filtered through the interface program must be
linked to the program so that invoking the command name executes the program. The interface
program is written in e and when a e program is executed, the name that invoked the program
is passed as argument ° and is followed by any user-supplied arguments. By looking at the value
of argument 0, the program knows which command to execute. Thus, the command name used
to invoke the interface program determines which sees command the program executes. How
other arguments, such as sees file names, are processed is often system dependent, but they
can be passed directly to the sees command by the program.

Configuring an SCCS System Using the Interface
As the sees System Administrator, there are six basic steps that you must carry out before
allowing other users to access sees files:

1. Create and move to an sees directory.

2. Write and compile the interface program.

3. Change the mode of the program.

4. Set up links between the program and the sees command names.

5. Modify each user's search path so that the directory containing the interface program is
searched before "/usr/bin", the directory containing the sees commands.

6. Create the sees files.

Creating the SCCS Directory
Before you can successfully use the sees interface program, you' must create one or more
directories for storing the sees files and the program. You, as the sees System Administrator,
should be the only one with write access to the directory.

For example, to create a directory called "/system/sccs" and then restrict write access to
yourself, use:

mkdir /system/sccs

chmod 755 /system/sccs

42 sees User's Guide

You must now move to the sees directory since you must to write and maintain the sees
interface program there:

cd Isystem/sccs

Writing and Compiling the Program
The sees interface program is written in e and this section assumes that you already know
how to program in that language.

You should write an sees interface program that is customized to the needs of your system.
To get you started, however, a general purpose interface program is provided below.

main (argc, argv)
int argc;
char *argv [] ;
{

register int i; I*counts command line arguments*1
character cmdstr[LENGTH] ; I*holds sees command name*1

Do any required processing of file name arguments that
follow the sees command name (arguments that don't begin
with -)

*1

for (i = 1; i<argc; i++)
if (argv [i] [0] ! = '-')

/*

*/

argv[i] = filearg(argv[i]);

Get "simple name" of name used to invoke this program
(i.e. strip off directory-prefix name, if any).
This step may not be needed in your system.

argv[O] sname(argv[O]) ;

Invoke actual sees command, passing arguments.
*/

sprintf(cmdstr, "/usr/bin/%s", argv[O]);

execv(cmdstr, argv);
}

sees User's Guide 43

This example program calls two routines that you must supply and that allow you to customize
the sees interface. "Filearg" acts as a preprocessor for sees commands. In the program
above, it is used to modify sees file name. This modification often involves appending the path
name of an sees directory to the sees file names so that users can access the files without
having to specify full path names. This routine is unnecessary if all users always specify the full
pathname of the sees files.

The second routine that you must supply is "sname". Its purpose is to modify the name with
which the user invoked the interface program so that it agrees with the name of the associated
sees command. The statement calling this routine is not required when the link names of the
interface program are the same as the names of the sees commands.

Once you have written an sees interface program designed for your system, you must compile
it. Assuming that you source code file is called "interface.c", use the following to compile it:

cc interface.c -0 interface

The name of the resulting executable program is "interface".

Specifying Program Access Permissions
The interface program must be owned by the sees System Administrator, and must be ex­
ecutable by the other users involved on the project. It must also have its "set user ID on
execution" bit on so that when the program is executed, the user obtains write access to the
sees directory. Assign these necessary characteristics to the program with:

chmod 4755 interface

where "interface" is the name of the executable interface program.

Assign Name Links to the Program
Now that you have an executable interface program, use the cp command to assign name links
to it. It is convienent for the users if these name links are the same as the sees commands
that are executed by the program.

To illustrate, assume that you want to allow users to access the get and delta commands through
the interface program. Create the necessary links with:

cp interface get

cp interface delta

You now have three names that point to the same program: "interface", "get", and "delta". All
of the other sees commands that require write acess to the sees directory will be inaccessible
to the users since you have not linked them to the program.

44 sees User's Guide

Modifying the Users' Search Path
Once you have linked the appropriate sees command names to the sees interface program,
you must modify each users' HP-UX search path so that the directory containing the the interface
program is found before the actual sees commands. PATH is the HP-UX variable that specifies
where the system looks for a command when a user executes it. When any command is executed,
the system searches for the command in the directories defined by the user's PATH variable.
The directories are searched in the order in which they appear in the variable's list. Your HP-UX
system has a default definition for PATH but it can be redefined by each user in his .profile or
.Iogin file. Refer to your system's HP-UX System Administrator Manual for more information
about the PATH variable and . profile/ .login files.

Whether you have to change the PATH variable in every user's" . profile" file or just the system's
default definition, you must insert the sees directory name before the appearance of "/usr /bin",
the directory containing the sees commands, in PATH's directory list. For example, if a user's
PATH variable is defined as:

PATH=/bin:/usr/bin

you should change it to:

PATH=/bin:/system/sees:/usr/bin

where "/system/secs" is the name of the sees directory containing the sees interface program.
When you execute a command, the system first searches for it in /bin, then in / system/ sccs,
and finally in /usr /bin.

Creating SCCS Files
As sees System Administrator, you are the only user able to execute admin because it requires
write access to the sees directory and you did not specify it as a link name to the sees interface
program. Having sole access to admin means that you can strictly control the creation of sees
files and the setting to their various flags. Refer back to the section "sees's Protection Facilities"
in this tutorial for more information.

Note that in order to make full use of sees for a multi-user project, sees files should be
maintained in a central location and logically grouped into one or more sees directories.

sees User's Guide 45

Quick Reference

Commands
In the discussion of the following sces commands, only the most useful keyletter arguments
are discussed. Refer to the HP-UX Reference for complete descriptions of the commands and
all of their keyletters.

get

get -e

delta

unget

prs

sact

Gets files for compilation (not for editing). ID keywords are expanded. Note that
get -e is listed separately. -rSID Version to get.

-p Send text to standard output rather than to the actual file.

-k Don't expand ID keywords.

-ilist List of deltas to include.

-xlist List of deltas to exclude.

-m Precede each line with SID of creating delta.

-cdate Don't apply any deltas created after date.

Gets files for editing. ID keywords are not expanded. Should be matched with a
delta command.

-rSID Same as get -rSID. If SID specifies a release
that does not yet exist, the highest
numbered delta is retrieved and the new delta
is numbered with SID.

-b Create a branch.

-ilist Same as get -ilist.

-xlist Same as get -xlist.

Merge a file retrieved with get -e back into the s-file. Collect comments about
why this delta was made.

Remove a file previously retrieved with get -e without merging the changes into
the s-file.

Print information about the SCCS file.

Determine who is currently editing a file.

46 SCCS User's Guide

what

admin

sccsdiff

cdc

rmdel

help

Find and print ID keywords that have been expanded. They must be preceded
by @(#) (the expand form of the keyword %2%).

Create or set parameters on s-files.

-ifile

-z

Create s-file, using file as the initial contents.

Rebuild the checksum in case the file has
been trashed.

-fflag[value] Turn on the flag and optionally give it a value.

-dflag Turn off (delete) the flag.

-tfile Replace the descriptive text in the s-file
with the contents of file. If file is
omitted, the descriptive text is deleted from
the s-file. Useful for storing
documentation or "design & implementation"
documents to insure they get distributed
with the s-file.

-h Check for corruption in the s-file.

Useful flags are:

b

dSID

i

t

Allow branches to be made using the -b flag
to get -e.

Default SID to be used on a get.

Cause "No Id Keywords" error message to be
a fatal error rather than a warning.

The module "type"; the value of this flag
replaces the %Y% keyword.

Compare two versions of an sces file.

Change the comment line or MR number associated with a previously created
delta.

Remove a delta from an secs file. This delta must be the most recent on its
branch or the main trunk- no other deltas can depend on it.

Supplies additional information about an secs error message.

sces User's Guide 47

ID Keywords
%Z%

%M%

%F%

%Y%

%1%

%W%

%E%

%G%

%U%

%R%

%L%

%8%

Expands to "@(#)" for the what command to find. Every ID keyword string that
you want what to see must be preceded by this keyword.

The current module name, e.g., "prog.c". Unless set by admin, it defaults to the
file name minus the "s." prefix.

The secs file name.

The value of the t flag as set by admin.

The SID of the retrieved text. The highest delta applied.

A shorthand for "%Z%%M% <tab> %1%".

The date of the delta corresponding to the "%1%" keyword (YY /MM/DD).

The date of the delta corresponding to the "%1%" keyword (MM/DD/YY).

The time the delta correspnding to the "%1%" keyword was created (HH:MM:SS).

The current release number, i.e., the first component of the "%1%" keyword.

The current level number, i.e., the second component of the "%1%" keyword.

The current branch number, i.e, the third component of the "%1%" keyword, if
it exists.

%S% The current sequence number, i.e., the fourth component of the "%1%" keyword,
if it exists.

%D% The current date (YY /MM/DD).

%H% The c~rrent date (MM/DD/YY).

% T% The current time (HH:MM:SS).

%Q% The value of the q flag as set by admin.

%C% The current line number. It is intended for identifying messages output by the
program such as "this shouldn't have happened" type errors. It is not intended
to be used on every line to provide sequence numbers.

48 sces User's Guide

Index

a
access permissions for sccs interface program, specifying 44
access to sccs files, admin command used to limit. .. 30, 31
adding comments to initial delta .. 27
admin command ... 4, 26, 27, 47
admin command used to create sccs files 26
admin command used to limit access to sccs files 30, 31
admin command used to protect sccs files 36
admin command used to restore corrupt s-file 26
a.out and prog.o compiled from prog.c 10
assign new release number for all sees files in a directory 11
assigning name links to sccs interface program 44

b
branch numbering ... 33
branch numbering must be limited .. 34
branch retrieval ... 33
branches, maintaining multiple .. 32

c
cancelling an editing session .. 12
cdc command ... 47
changes, merging back into s-files ... 7
changes, temporary .. 25
changing files ... 7-12
chmod command .. 25
comments, adding to initial delta .. 27
comparing versions of a file ... 18
compile prog.c to form prog.o and a.out 10
concurrent edits on different versions ; 24
configuring an sccs system by use of sccs interface 42
creating new releases .. 11
creating sccs directory ... 42
creating sees files ... 4
creating sccs files .. 45

Index 49

d
d-files .. 22
d-files used during delta execution ... 22
delta command .. 2, 7, 8, 46
deltas, including selected ... 14
deltas, removing .. 15
deltas, when to make ... 8
descriptive text in files ... 27
diff command ... 18
different versions, concurrent edits on .. 24
directory, creating sccs ... 42

e
edit, cancelling a session ... 12
edit file, lost, recovering .. 26
editing, concurrent, on different versions 24
editing s-files ... 20
editing: getting a copy .. 7
edits, concurrent, on same version ... 25
excluding selected old deltas .. 14

f
file access, sccs, admin command used to limit 30, 31
file, lost edit, recovering .. 26
file searches by what ... 10
file types, sccs .. 19
file version comparisons .. 18
files, descriptive text in .. 27
files, getting for compilation ... 6
files, sees, creating ... 45

9
g-files, created by get command ... 21
g-files, editing ... 21
get -e command, multiple, must be executed from different directories 24
get -r command to create new release .. 11
get -x command ... 15
get command ... 3,7, 10,46
get command creates g-files ... 21

50 Index

get command creates I-files ... 21
get command creates p-files ... 22
getting a copy to edit ... 7
getting files for compilation ... 6
groups of programs, maintaining .. 38

h
help command 16,47

i
ID keyword expansion .. 3,4, 10
ID keywords ... 3-5,9, 47
ID keywords in header files ... 10
ID keywords in header files as comments 11
ID keywords placed in sees files .. 10
including selected deltas .. 14
interface, sccs, how it works .. 42

I
I-files, created by get command 21
large programs, maintaining .. 38
level number ... 2
library, maintaining .. 38
lost edit file, recovering .. 26

m
maintaining a library .. 38
maintaining groups of programs ... 38
maintaining large programs ... 38
maintaining multiple branches .. 32
make, using sccs with .. 37
merging changes back into s-files ... 7
modifying user's search path .. 45
multi-user project, using sccs on ... 41
multiple branches, maintaining .. 32

Index 51

n
name links to sccs interface program, assigning 44
new release number assigned for all sees files in a directory 11
numbering branches ... 33

o
old deltas, selectively excluding ... 14
old versions, restoring or reverting to .. 13

p
p-file required before delta command can be used 22
p-files, created by get command ... 22
p-files, regenerated by get command if destroyed 22
path, search, modifying user's ... 45
permissions for sccs interface program access, specifying 44
print sces delta comments .. 17
prog.c compiled to form prog.o and a.out 10
prog.o and a.out compiled from prog.c 10
program, secs interface, assigning name links to 44.
program, sccs interface, specifying access permissions for 44
program, sccs interface, writing and compiling 43
programs, maintaining groups of .. 38
programs, maintaining large .. 38
project, multi-user, using sccs on .. 41
protecting sccs files .. 35
prs command .. 17, 18, 46
prs command, used to see descriptive text in files 27

q
q-file temporary copy of p-file ... 23
q-file used during edit of p-file .. 23
q-files .. 23
quick reference ... 46-48

r
recovering lost edit file ... 26
release"number ... 2
removing deltas ... 15
removing sees files .. 5
restoring old versions .. 13

52 Index

restoring s-files .. 20, 26
retrieving a branch .. 33
reverting to old versions .. 13
rmdel command ... 15, 47

5
s-file .. 2, 4, 19
s-file contents ... 20
s-files, editing ... 20
s-files, merging changes back into ... 7
s-files, restoring ... 20, 26
sact command ... 8,46
sact command presents data from p-files 22
same versions, concurrent edits on ... 25
sccs directory, creating ... 42
sccs file access, admin command used to limit 30, 31
sccs file flags, description of .. 28, 29
sccs file flags, setting 28
sccs file protection ... 35
sccs file types ... 19
sccs files, creating .. 45
sees ID .. 2
sccs interface, how it works ... 42
sccs interface program, assigning name links to 44
sccs interface program, specifying access permissions for 44
sccs interface program, writing and compiling 43
sccs interface, used to configure an sccs system 42
sccs sytem configured by use of sccs interface 42
sccs, use with make .. 37
sccs used on multi-user project .. 41
sccsdiff command. .. 18, 22, 47
search path, modifying user's ... 45
setting sccs file flags ... 28
SID .. 2
specifying sccs interface program access permissions 44

t
temporary changes .. 25
text in files, descriptive .. 27
types of sccs files .. 19

Index 53

u
unget command , , '" 12,46
user search path, modifying .. 45
using ID keywords .. 8
using sccs interface to configure an sccs system 42
using sccs with make .. 37

v
version number .. 2
versions, concurrent edits on different .. 24
versions, concurrent edits on same ... 25
versions of a file, comparing .. 18

w
what command .. 3, 6, 9, 47
what, file searches by .. 10
when to make deltas .. 8
why lines inserted ... 18
writing and compiling sccs interface program 43

x
x-file temporary copy of s-file ... 23
x-file used during modifications of s-file 23
x-files .. 23

z
z-files .. 23
z-files used as lock files to protect sccs updating 23

54 Index

Table of Contents
Lex: A Lexical Analyzer Generator

Introduction. .. 1
Lex Source .. 4
Lex Regular Expressions .. 5

Operators .. 5
Character classes .. 6
Arbitrary character 7
Optional expressions .. 7
Repeated expressions .. 7
Alternation and Grouping. .. 8
Context sensitivity .. 8
Repetitions and DefinHions ... 9
Operator Precedence .. 9

Lex Actions. .. 10
Example ... 11

Ambiguous Source Rules .. 14
Lex Source Definitions. .. 16
Usage ... 18

HP-UX .. 18
Lex and Yacc ... 19
Examples .. 20
Left-Context Sensitivity .. 23
Character Set .. 26
Summary of Source Format. .. 27
Caveats and Bugs 28

Lex: A Lexical Analyzer Generator
Introduction
Lex is a program generator designed to create C-language programs that perform lexical pro­
cessing on input character streams. Lex accepts user-supplied, high-level, problem-oriented
specifications for character string matching, and produces a C program that, in turn, recognizes
specified regular expressions. User-written source specifications are converted by Lex into a
C program that can recognize the specified regular expressions, then execute corresponding C
program fragments that have also been furnished by the user.

The input character stream must consist entirely of a succession of defined, recognizable regular
expressions. As the input stream is processed by the Lex-produced C program, the program
executes a user-specified-and-provided C code fragment each time it encounters a recognized
regular expression. If the input character stream contains an expression that is not recognized,
an operation is performed on the expression that is equivalent to an echo command, and no
other action is taken on the expression.

Lex thus provides a means for supporting a high-level-expression language where the user's
freedom to write actions is unimpaired. By defining expressions and their equivalent C program
fragments, the user who wishes to use a string-manipulation language for input analysis can
easily convert the language to a C-based processing program without having to write processing
programs in an inappropriate string-handling language.

Lex is not a complete language, but rather a generator that provides a means for adding a new
language feature to the host C language. The resulting C program can then be run on any
HP-UX system that provides the necessary program support hardware.

The C language is used both for the output code produced by Lex as well as the user-supplied
program fragments. Compatible run-time C libraries are also provided by HP-UX, thus making
Lex readily adaptable to any HP-UX-based application and hardware set, as well as to the user's
background and properties of local implementations.

Lex converts the user-defined regular expressions and corresponding actions (called source) into
the host C language. The resulting C program is stored in a file named lex.yy.c that contains the
yylex() function. The yylex function recognizes defined expressions in an input stream (called
input) and performs the specified actions (executes the specified C-program fragment) for each
recognized expression as it is detected. See Figure 1.

Lex: A Lexical Analyzer Generator 1

Source---'" LEX ---... yylex

Input ---... yylex --+ Output

Figure 1: An overview of Lex

For a trivial example, consider a program that deletes all blanks or tabs at the ends of lines in
the input character stream.

%%
[\t] +$ (a space is required before \ t)

is all that is required. The program contains a %% delimiter to mark the beginning of the
rules, followed by one rule. This rule contains a regular expression that matches one or more
instances of the characters blank or tab (written \ t for visibility, in accordance with the C language
convention) just prior to the end of a line. The brackets indicate the character class made of
blank and tab; the + indicates "one or more ... "; and the $ indicates "end of line," similar to
ED. No action is specified, so the program generated by Lex (yylex) will ignore these characters.
Everything else will be copied. To change any remaining string of blanks or tabs to a single
blank, add another rule:

%%
[\t] +$
[\t]+ printf(" H);

The finite automaton generated for this source will scan for both rules at once, observing at
the termination of the string of blanks or tabs whether or not there is a newline character, and
executing the desired rule action. The first rule matches all strings of blanks or tabs at the end
of lines, and the second rule all remaining strings of blanks or tabs.

Lex can be used alone for simple transformations, or for analysis and statistics gathering on
a lexical level. Lex can also be used with a parser generator to perform the lexical analysis
phase; it is particularly easy to interface Lex and Yacc. Lex programs recognize only regular
expressions; Yacc writes parsers that accept a large class of context free grammars, but require
a lower level analyzer to recognize input tokens. Thus, a combination of Lex and Yacc is often
appropriate. When used as a preprocessor for a later parser generator, Lex is used to partition
the input stream, and the parser generator assigns structure to the resulting pieces. The flow
of control in such a case (which might be the first half of a compiler, for example) is shown in
Figure 2. Additional programs, written by other generators or by hand, can be added easily to
programs written by Lex. Yacc users will realize that the name yylex is what Yacc expects its
lexical analyzer to be named, so that the use of this name by Lex simplifies interfacing.

2 Lex: A Lexical Analyzer Generator

Input --+

lexical
rules

~
LEX

yylex

grammar
rules

~
yacc

yyparse

Figure 2: Lex with Yacc

--+ Parsed input

Lex generates a deterministic finite automaton from the regular expressions in the source. The
automaton is interpreted, rather than compiled, in order to save space. The result is still a fast
analyzer. In particular, the time taken by a Lex program to recognize and partition an input
stream is proportional to the length of the input. The number of Lex rules or the complexity
of the rules is not important in determining speed, unless rules which include forward context
require a significant amount of re"'scanning. What does increase with the number and complexity
of rules is the size of the finite automaton, and therefore the size of the program generated by
Lex.

In the program written by Lex, the user's fragments (representing the actions to be performed
as each regular expression is found) are gathered, as cases of a switch statement in C. The
automaton interpreter directs the control flow. Opportunity is provided for the user to insert
either declarations or additional statements in the routine containing the actions, or to add
subroutines outside this action routine.

Lex is not limited to source which can be interpreted on the basis of one character look-ahead.
For example, if there are two rules, one looking for ab and another for abcdefg, and the input
stream is abcdefh, Lex will recognize ab and leave the input pointer just before" cd. "Such
backup is more costly than the processing of simpler languages.

Lex: A Lexical Analyzer Generator 3

Lex Source
The general format of Lex source is:

{definitions}
%%
{rules}
%%
{user subroutines}

where the definitions and the user subroutines are often omitted. The second %% is optional,
but the first is required to mark the beginning of the rules. The absolute minimum Lex program
is thus

(no definitions, no rules) which translates into a program which copies the input to the output
unchanged.

In the outline of Lex programs shown above, the rules represent the user's control decisions;
they are a table, in which the left column contains regular expressions (explained in next section)
and the right column contains actions (program fragments to be executed when the expressions
are recognized). Thus an individual rule might appear

integer printf("found keyword INT");

to look for the string integer in the input stream and print the message "found keyword INT"
whenever it appears. In this example the host procedural language is C and the C library function
printf is used to print the string. The end of the expression is indicated by the first blank or tab
character. If the action is merely a single C expression, it can just be given on the right side of
the line; if it is compound, or takes more than a line, it should be enclosed in braces.

As a slightly more useful example, suppose it is desired to change a number of words from
British to American spelling. Lex rules such as

colour
mechanise
petrol

printf("color");
printf("mechanize");
printf(lIgas ll);

would be a start. These rules are not quite enough, since the word petroleum would become
gaseum. A way of dealing with this will be described later.

4 Lex: A Lexical Analyzer Generator

Lex Regular Expressions
The definitions of regular expressions are similar to those in ED. A regular expression specifies
a set of strings to be matched. It contains text characters (which match the corresponding
characters in the strings being compared) and operator characters (which specify repetitions,
choices, and other features). The letters of the alphabet and the digits are always text characters;
thus the regular expression

integer

matches the string integer wherever it appears and the expression

a57D

looks for the string a5 7D.

Operators
The operator characters are

and if they are to be used as text characters, an escape should be used. The quotation mark
operator (I ") indicates that whatever is contained between a pair of quotes is to be taken as text
characters. Thus

xyz"++"

matches the string xyz++ when it appears. Note that a part of a string may be quoted. It is
harmless but unnecessary to quote an ordinary text character; the expression

"xyZ++"

is the same as the one above. Thus by quoting every non-alphanumeric character being used as
a text character, the user can avoid remembering the list above of current operator characters,
and is safe should further extensions to Lex lengthen the list.

An operator character may also be turned into a text character by preceding it with \ as in

xyz\+\+

Lex: A Lexical Analyzer Generator 5

which is another, less readable, equivalent of the above expressions. Another use of the quoting
mechanism is to get a blank into an expression; normally, as explained above, blanks or tabs
end the regular-expression portion of a rule. Any blank character not contained within [] (see
below) must be quoted. Several normal C escapes with \ are recognized: \n is. newline, \t is
tab, and \b is backspace. To enter \ itself, use \ \. Since newline is illegal in an expression, \n
must be used; it is not required to escape tab and backspace. Every character but blank, tab,
newline and the list above is always a text character.

Character classes
Classes of characters can be specified using the operator pair []. The construction [abc] matches
a single character, which may be a, b, or c. Within square brackets, most operator meanings
are ignored. Only three characters are special: these are \, - and A. The - character indicates
ranges. For example,

[a-zO-9<> _]

indicates the character class containing all the lower case letters, the digits, the angle brackets,
and underline. Ranges may be given in either order. Using - between any pair of characters
which are not both upper case letters, both lower case letters, or both digits is implementation
dependent and will get a warning message. (E.g., [O-z] in ASCII is many more characters than
it is in EBCDIC). If it is desired to include the character - in a character class, it should be first
or last; thus

[-+0-9]

matches all the digits and the two signs.

In character classes, the A operator must appear as the first character after the left bracket; it
indicates that the resulting string is to be complemented with respect to the computer character
set. Thus

matches all characters except a, b, or c, including all special or control characters; or

is any character which is not a letter. The \ character provides the usual escapes within character
class brackets.

6 Lex: A Lexical Analyzer Generator

Arbitrary character
To match almost any character, the operator character

(dot or period)

is the class of all characters except newline. Escaping into octal is possible although non-portable:

[\40-\176]

matches all printable characters in the ASCII character set, from octal 40 (blank) to octal 176
(tilde).

Optional expressions
The operator "?" indicates an optional element of an expression. Thus

ab?c

matches either ac or abc.

Repeated expressions
Repetitions of classes are indicated by the operators • and +.

is any number of consecutive Q characters, including zero; while

a+

is one or more instances of Q. For example,

[a-z] +

is all strings.of lower case letters. And

[A-Za-z] [A-Za-zO-9]*

indicates all alphanumeric strings with a leading alphabetic character. This is a typical expression
for recognizing identifiers in computer languages.

Lex: A Lexical Analyzer Generator 7

Alternation and Grouping
The operator I indicates alternation:

(abled)

matches either ab or cd. Note that parentheses are used for grouping, although they are not
necessary on the outside level;

abled

would have sufficed. Parentheses can be used for more complex expressions:

(abled+)?(ef)*

matches such strings asabefef, efefef, cdef, or cddd; but not abc, abed, or abcdef.

Context sensitivity
Lex will recognize a small amount of surrounding context. The two simplest operators for this
are " and $. If the first character of an expression is ", the expression will only be matched at
the beginning of a line (after a newline character, or at the beginning of the input stream). This
can never conflict with the other meaning of ", complementation of character classes, since that
only applies within the [] operators. If the very last character is $, the expression will only be
matched at the end of a line (when immediately followed by newline). The latter operator is a
special case of the / operator character, which indicates trailing context. The expression

ab/ed

matches the string ab, but only if followed by cd. Thus

ab$

is the same as

ab/\n

Left context is handled in Lex by start conditions as explained in the section on left context
sensitivity. If a rule is only to be executed when the Lex automaton interpreter is in start
condition x, the rule should be prefixed by

<x>

8 Lex: A Lexical Analyzer Generator

using the angle bracket operator characters. If we considered "being at the beginning of a line"
to be start condition ONE, then the A operator would be equivalent to

<ONE>

Start conditions are explained more fully later.

Repetitions and Definitions
The operators {} specify either repetitions (if they enclose numbers) or definition expansion (if
they enclose a name). For example

{digit}

looks for a predefined string named digit and inserts it at that point in the expression. The
definitions are given in the first part of the Lex input, before the rules. In contrast,

a{l,5}

looks for 1 to 5 occurrences of Q.

a{2, }

matches two or more occurrences of Q, while

a{3}

matches exactly three occurences of Q and is equivalent to QQQ.

Finally, initial % is special, being the separator for Lex source segments.

Operator Precedence
Lex operators are handled according to the following rules of precedence:

• All operations on a single line have the same precendence .

• Lex operators are ranked in the following order of precendence, beginning with highest
precedence and proceding to the lowest precedence:

* ? +
concatenation
repetition
$ A

I
/ <>

Lex: A Lexical Analyzer Generator 9

Lex Actions
When an expression written as above is matched, Lex executes the corresponding action. This
section describes some features of Lex which aid in writing actions. Note that there is a default
action, which consists of copying the input to the output. This is performed on all strings· not
otherwise matched. Thus the Lex user who wishes to absorb the entire input, without producing
any output, must provide rules to match everything. When Lex is being used with Yacc, this
is the normal situation. One may consider that actions are what is done instead of copying
the input to the output; thus, in general, a rule which merely copies can be omitted. Also, a
character combination which is omitted from the rules and which appears as input is likely to
be printed on the output, thus calling attention to the gap in the rules.

One of the simplest things that can be done is to ignore the input. Specifying a C null statement,
";" as an action causes this result. A frequent rule is

[\t\n] ;

which causes the three spacing characters (blank, tab, and newline) to be ignored.

Another easy way to avoid writing actions is the action character which indicates that the action
for this rule is the action for the next rule. The previous example could also have been written

" II

"\t"
"\n"

with the same result, although in different style (the quotes around \n and \t are optional).

In more complex actions, the user will often want to know the actual text that matched some
expression like [a-z}+. Lex leaves this text in an external character array named yytext. Thus,
to print the name found, a rule like

[a-z] + printf ("%s", yytext);

will print the string in /fIyytext/fR. The C function printf accepts a format argument and data
to be printed; in this case, the format is "print string" (% indicating data conversion, and s
indicating string type), and the data are the characters in yytext. So this just places the matched
string on the output. This action is so common that it may be written as ECHO:

[a-z]+ ECHO;

10 Lex: A Lexical Analyzer Generator

is the same as the above. Since the default action is just to print the characters found, one
might ask why give a rule, like this one, which merely specifies the default action? Such rules
are often required to avoid matching some other rule which is not desired. For example, if there
is a rule which matches read it will normally match the instances of read contained in bread or
readjust; to avoid this, a rule of the form [a-z}+ is needed. This is explained further below.

Sometimes it is more convenient to know the end of what has been found; hence Lex also
provides a count yyleng of the number of characters matched. To count both the number of
words and the number of characters in words in the input, the user might write

[a-zA-Z]+ {words++; chars += yyleng;}

which accumulates in chars the number of characters in the words recognized. The last character
in the string matched can be accessed by

yytext[yyleng-l]

Occasionally, a Lex action may decide that a rule has not recognized the correct span of char­
acters. Two routines are provided to aid with this situation. First, yymoreO can be called to
indicate that the next input expression recognized is to be tacked on to the end of this input.
Normally, the next input string would overwrite the current entry in yytext. Second, yyless {n}
may be called to indicate that not all the characters matched by the currently successful expres­
sion are wanted right now. The argument n indicates the number of characters in yytext to be
retained. Further characters previously matched are returned to the input. This provides the
same sort of look-ahead offered by the / operator, but in a different form.

Example
Consider a language which defines a string as a set of characters between quotation (") marks,
and provides that to include a I II in a string it must be preceded by a \. The regular expression
which matches that is· somewhat confusing, so that it might be preferable to write

\"[-"]* {
if (yytext[yyleng-l] == '\\')

yymoreO;
else

'" normal user processing
}

which will, when faced with a string such as "abc\" def" first match the five characters" abc\ ;
then the call to yymoreO will cause the next part of the string, "def, to be tacked on the end.
Note that the final quote terminating the string should be picked up in the code labeled "normal
processing" .

Lex: A Lexical Analyzer Generator 11

The function yylessO might be used to reprocess text in various circumstances. Consider the C
problem of distinguishing the ambiguity of "=-a". Suppose it is desired to treat this as "=- a"
but print a message. A rule might be

=-[a-zA-Z] {
printf("Operator (=-) ambiguous\n");
yyless(yyleng-l);

action for =- ...
}

which prints a message, returns the letter after the operator to the input stream, and treats the
operator as "=-". Alternatively it might be desired to treat this as "= -a". To do this, just
return the minus sign as well as the letter to the input:

=-[a-zA-Z] {
printf("Operator (=-) ambiguous\n");
yyless(yyleng-2) ;

action for = ...
}

will perform the other interpretation. Note that the expressions for the two cases might more
easily be written

=-/[A-Za-z]

in the first case and

=/-[A-Za-z]

in the second; no backup would be required in the rule action. It is not necessary to recognize
the whole identifier to observe the ambiguity. The possibility of "=-3", however, makes

a still better rule.

In addition to these routines, Lex also permits access to the I/O routines it uses. They are:

1. inputO which returns the next input character;

2. output(c) which writes the character c on the output; and

3. unput(c) pushes the character c back onto the input stream to be read later by inputO.

12 Lex: A Lexical Analyzer Generator

By default these routines are provided as macro definitions, but the user can override them and
supply private versions. These routines define the relationship between external files and internal
characters, and must all be retained or modified conSistently. They may be redefined, to cause
input or output to be transmitted to or from strange places, including other programs or internal
memory; but the character set used must be consistent in all routines; a value of zero returned
by input must mean end of file; and the relationship between unput and input must be retained
or the Lex look-ahead will not work.

Lex does not look ahead at all if it does not have to, but every rule ending in +, \ * , ?, or $ or
containing / implies look-ahead. Look-ahead is also necessary to match an expression that is a
prefix of another expression. See below for a discussion of the character set used by Lex. The
standard Lex library imposes a 100 character limit on backup.

Another Lex library routine that the user will sometimes want to redefine is yywrapO which is
called whenever Lex reaches an end-of-file. If yywrap returns aI, Lex continues with the normal
wrapup on end of input. Sometimes, however, it is convenient to arrange for more input to
arrive from a new source. In this case, the user should provide a yywrap which arranges for
new input and returns O. This instructs Lex to continue processing. The default yywrap always
returns 1.

This routine is also a convenient place to print tables, summaries, etc. at the end of a program.
Note that it is not possible to write a normal rule which recognizes end-of-file; the only access
to this condition is through yywrap. In fact, unless a private version of inputO is supplied a file
containing nulls cannot be handled, since a value of 0 returned by input is taken to be end-of-file.

Lex: A Lexical Analyzer Generator 13

Ambiguous Source Rules
Lex can handle ambiguous specifications. When more than one expression can match the current
input, Lex chooses as follows:

1. The longest match is preferred.

2. Among rules which matched the same number of characters, the rule given first is preferred.

Thus, suppose the rules

integer keyword action ... ,
[a-z] + identifier action ... ;

to be given in that order. If the input is integers, it is taken as an identifier, because [a-z}+
matches 8 characters while integer matches only 7. If the input is integer, both rules match 7
characters, and the keyword rule is selected because it was given first. Anything shorter (e.g.
int) will not match the expression integer and so the identifier interpretation is used.

The principle of preferring the longest match makes rules containing expressions like. * dangerous.
For example,

, .*'

might seem a good way of recognizing a string in single quotes. But it is an invitation for the
program to read far ahead, looking for a distant single quote. Presented with the input

'first' quoted string here, 'second' here

the above expression will match

'first' quoted string here, 'second'

which is probably not what was wanted. A better rule is of the form

which, on the above input, will stop after 'first'. The consequences of errors like this are
mitigated by the fact that the . operator will not match newline. Thus expressions like . * stop
on the current line. Don't try to defeat this with expressions like [.\n}+ or eqUivalents; the Lex
generated program will try to read the entire input file, causing internal buffer overflows.

14 Lex: A Lexical Analyzer Generator

Note that Lex is normally partitioning the input stream, not searching for all possible matches
of each expression. This means that each character is accounted for once and only once. For
example, suppose it is desired to count occurrences of both she and he in an input text. Some
Lex rules to do this might be

she s++;
he h++;
\n I

where the last two rules ignore everything besides he and she. Remember that. does not include
newline. Since she includes he, Lex will normally not recognize the instances of he included in
she, since once it has passed a she those characters are gone.

Sometimes the user would like to override this choice. The action REJECT means "go do
the next alternative." It causes whatever rule was second choice after the current rule to be
executed. The position of the input pointer is adjusted accordingly. Suppose the user really
wants to count the included instances of he:

she {s++; REJECT;}
he {h++; REJECT;}
\n I

these rules are one way of changing the previous example to do just that. After counting each
expression, it is rejected; whenever appropriate, the other expression will then be counted. In
this example, of course, the user could note that she includes he but not vice versa, and omit
the REJECT action on he; in other cases, however, it would not be possible a priori to tell which
input characters were in both classes.

Consider the two rules

a[bc] + {
a[cd]+ {

REJECT;}
REJECT;}

If the input is ab, only the first rule matches, and on ad only the second matches. The input string
accb matches the first rule for four characters and then the second rule for three characters. In
contrast, the input aced agrees with the second rule for four characters and then the first rule
for three.

Lex: A Lexical Analyzer Generator 15

In general, REJECT is useful whenever the purpose of Lex is not to partition the input stream
but to detect all examples of some items in the input, and the instances of these items may
overlap or include each other. Suppose a digram table of the input is desired; normally the
digrams overlap, that is the word the is considered to contain both th and he. Assuming a
two-dimensional array named digram to be incremented, the appropriate source is

'1.'1.
[a-z] [a-z] {digram [yytext [0]] [yytext[l]]++; REJECT;}

\n

where the REJECT is necessary to pick up a letter pair beginning at every character, rather than
at every other character.

Lex Source Definitions
Remember the format of the Lex source:

{definitions}
'1.'1.
{rules}
'1.'1.
{user routines}

So far only the rules have been described. The user needs additional options, though, to define
variables for use in his program and for use by Lex. These can go either in the definitions
section or in the rules section.

Remember that Lex is turning the rules into a program. Any source not intercepted by Lex is
copied into the generated program. There are three classes of such things.

1. Any line which is not part of a Lex rule or action which begins with a blank or tab is
copied into the Lex generated program. Such source input prior to the first %% delimiter
will be external to any function in the code; if it appears immediately after the first %%,
it appears in an appropriate place for declarations in the function written by Lex which
contains the actions. This material must look like program fragments, and should precede
the first Lex rule.

As a side effect of the above, lines which begin with a blank or tab, and which contain
a comment, are passed through to the generated program. This can be used to include
comments in either the Lex source or the generated code. The comments should follow
the host language convention.

16 Lex: A Lexical Analyzer Generator

2. Anything included between lines containing only %{ and %} is copied out as above. The
delimiters are discarded. This format permits entering text like preprocessor statements
that must begin in column 1, or copying lines that do not look like programs.

3. Anything after the third %% delimiter, regardless of formats, etc., is copied out after the
Lex output.

Definitions intended for Lex are given before the first %% delimiter. Any line in this section not
contained between %{ and %}, and begining in column 1, is assumed to define Lex substitution
strings. The format of such lines is

name translation

and it causes the string given as a translation to be associated with the name. The name and
translation must be separated by at least one blank or tab, and the name must begin with a
letter. The translation can then be called out by the {name} syntax in a rule. Using {D} for the
digits and {E} for an exponent field, for example, might abbreviate rules to recognize numbers:

D
E
'1.'1.
{D}+
{D}+"."{D}*({E})?
{D}*"."{D}+({E})?
{D}+{E}

[0-9]
[DEde] [-+] ?{D}+

printf("integer");
I
I
printf("real");

Note the first two rules for real numbers; both require a decimal point and contain an optional
exponent field, but the first requires at least one digit before the decimal point and the second
requires at least one digit after the decimal point. To correctly handle the problem posed by a
Fortran expression such as 35.EO.l, which does not contain a real number, a context-sensitive
rule such as

[0-9] +/" . "EQ printf("integer");

could be used in addition to the normal rule for integers.

The definitions section may also contain other commands, including the selection of a host
language, a character set table, a list of start conditions, or adjustments to the default size of
arrays within Lex itself for larger source programs. These possibilities are discussed later in the
section "Summary of Source Format,".

Lex: A Lexical Analyzer Generator 17

Usage
There are two steps in compiling a Lex source program. First, the Lex source must be turned
into a generated program in the host general purpose language. Then this program must be
compiled and loaded, usually with a library of Lex subroutines. The generated program is on a
file named lex.yy.c. The I/O library is defined in terms of the C standard library.

HP-UX
The library is accessed by the loader flag -1/ for C, so an appropriate set of commands is

lex source
cc lex.yy.c ~ll

The resulting program is placed on the usual file a.out for later execution. To use Lex with Yacc
see below. Although the default Lex I/O routines use the C standard library, the Lex automata
themselves do not do so; if private versions of input, output and unput are given, the library can
be avoided.

18 Lex: A Lexical Analyzer Generator

Lex and Yacc
If you want to use Lex with Yacc, note that what Lex writes is a program named yylex{} , the
name required by Yacc for its analyzer. Normally, the default main program on the Lex library
calls this routine, but if Yacc is loaded, and its main program is used, Yacc will call yylex{}. In
this case each Lex rule should end with

return(token);

where the appropriate token value is returned. An easy way to get access to Yacc's names for
tokens is to compile the Lex output file as part of the Yacc output file by placing the line

include "lex.yy.c"

in the last section of Yacc input. Supposing the grammar to be named "good" and the lexical
rules to be named "better" the HP-UX command sequence can just be:

yacc good
lex better
cc y.tab.c -ly -11

The Yacc library (-ly) should be loaded before the Lex library, to obtain a main program which
invokes the Yacc parser. The generations of Lex and Yacc programs can be done in either order.

Alternatively, the -d option of yacc can be used to generate a file y.tab.h of token definitions.
This can be included in the Lex program by placing

%{
#include "y.tab.h"
%}

in the definitions section of the Lex input file. If the grammar is gram.y and the lexical rules are
in file scan. I, the HP-UX command sequence is:

yacc -d gram.y
lex scan.l
cc y.tab.c lex.yy.c -ly -11

Lex: A Lexical Analyzer Generator 19

Examples
As a simple example, consider copying an input file while adding 3 to every positive number
which is divisible by 7. Here is a suitable Lex source program

%%
int k;

[0-9] + {
k = atoi(yytext);
if (k%7 == 0)

printf("%d". k+3);
else

printf("%d".k) ;
}

to do just that. The rule [0-9]+ recognizes strings of digits; atoi converts the digits to binary
and stores the result in k. The operator % (remainder) is used to check whether k is divisible
by 7; if it is, it is incremented by 3 as it is written out. It may be objected that this program
will alter such input items as 49.63 or X7. Furthermore, it increments the absolute value of all
negative numbers divisible by 7. To avoid this, just add a few more rules after the active one,
as here:

%%
int k;

-1[0-9]+

-1[0-9.]+
[A-Za-z] [A-Za-zO-9]+

{

k = atoi(yytext);
printf ("%d". (k%7
}
ECHO;
ECHO;

0)&&(k>O)1 k+3 k);

Numerical strings containing a "." or preceded by a letter will be picked up by one of the last
two rules, and not changed. The if-else has been replaced by a C conditional expression to save
space; the form a?b:c means "if a then b else c."

20 Lex: A Lexical Analyzer Generator

For an example of statistics gathering, here is a program which histograms the lengths of words,
where a word is defined as a string of letters.

'!.'!.
int lengs[100];

[a-z] + lengs[yyleng]++;
I

\n
'!.'!.
yywrapO
{

int i;
printf("Length No. words\n");
for(i=O; i<100; i++)

if (lengs[i] > 0)
printf(I'!.5d'!.10d\n".i.lengs[i]);

return(1) ;
}

This program accumulates the histogram, while producing no output. At the end of the input
it prints the table. The final statement return(1); indicates that Lex is to perform wrapup. If
yywrap returns zero (false) it implies that further input is available and the program is to continue
reading and processing. To provide a yywrap that never returns true causes an infinite loop.

As a larger example, here are some program fragments which converts double precision Fortran
to single precision Fortran. Because Fortran does not distinguish upper and lower case letters,
this routine begins by defining a set of classes including both cases of each letter:

a [aA]
b [bB]
c [cC]

z [zZ]

An additional class recognizes white space:

W [\t]*

The first rule changes "double precision" to "real", or "DOUBLE PRECISION" to "REAL".

{d}{o}{u}{b}{l}{e}{W}{p}{r}{e}{c}{i}{s}{i}{o}{n} {
printf(yytext[O]=='d'? "real" : "REAL");
}

Lex: A Lexical Analyzer Generator 21

Care is taken throughout this program to preserve the case (upper or lower) of the original
program. The conditional operator is used to select the proper form of the keyword. The next
rule copies continuation card indications to avoid confusing them with constants:

-II 11[- 0] ECHO;

In the regular expression, the quotes surround the blanks. It is interpreted as "beginning of line,
then five blanks, then anything but blank or zero." Note the two different meanings of ". There
follow some rules to change double precision constants to ordinary floating constants.

[0-9] +{W}{d}{W} [+-] ?{W} [0-9] + I
[0-9]+{W}"."{W}{d}{W}[+-]?{W}[0-9]+ I
". "{W} [0-9] +{W}{d}{W} [+-] ?{W} [0-9] + {

1* convert constants *1
for (p=yy text; *p != 0; p++)

{

if (*p == 'd' I *p == 'D')
*p=+ 'e' - , d ' ;

ECHO;
}

After the floating point constant is recognized, it is scanned by the for loop to find the letter d
or D. The program than adds 'e'-'d' which converts it to the next letter of the alphabet. The
modified constant, now single-precision, is written out again. There follow a series of names
which must be respelled to remove their initial d. By using the array yytext the same action
suffices for all the names (only a sample of a rather long list is given here).

{d}{s}{i}{n}
{d}{c}{o}{s}
{d}{s}{q}{r}{t}
{d}{a}{t}{a}{n}

{d}{f}{l}{o}{a}{t} printf("%s".yytext+l);

Another list of names must have initial d changed to initial a:

{d}{l}{o}{g}
{d}{1}{o}{g}10
{d}{m}{i}{n}l
{d}{m}{a}{x}1

I
I
I
{
yytext[O] =+ 'a' - 'd';
ECHO;
}

22 Lex: A Lexical Analyzer Generator

And one routine must have initial d changed to initial r:

{d}1{m}{a}{c}{h} {yytext[O] =+ 'r' - 'd';
ECHO;
}

To avoid such names as dsinx being detected as instances of dsin, some final rules pick up longer
words as identifiers and copy some surviving characters:

[A-Za-z] [A-Za-zO-9]*
[0-9] +
\n

ECHO;

Note that this program is not complete; it does not deal with the spacing problems in Fortran
or with the use of keywords as identifiers.

Left-Context Sensitivity
Sometimes it is desirable to have several sets of lexical rules to be applied at different times
in the input. For example, a compiler preprocessor might distinguish preprocessor statements
and analyze them differently from ordinary statements. This requires sensitivity to prior context,
and there are several ways of handling such problems. The'" operator, for example, is a prior
context operator, recognizing immediately preceding left context just as $ recognizes immediately
following right context. Adjacent left context could be extended, to produce a facility similar
to that for adjacent right context, but it is unlikely to be as useful, since often the relevant left
context appeared some time earlier, such as at the beginning of a line.

This section describes two means of dealing with different environments: a simple use of flags,
when only a few rules change from one environment to another and the use of start conditions
on rules run together. In each case, there are rules which recognize the need to change the
environment in which the succeeding input text is analyzed, and set some parameter to reflect
the change. This may be a flag explicitly tested by the user's action code; such a flag is the
simplest way of dealing with the problem, since Lex is not involved at all. It may be more
convenient, however, to have Lex remember the flags as initial conditions on the rules. Any
rule may be associated with a start condition. It will only be recognized when Lex is in that
start condition. The current start condition may be changed at any time. Finally, if the sets of
rules for the different environments are very dissimilar, clarity may be best achieved by writing
several distinct lexical analyzers, and switching from one to another as desired.

Consider the following problem: copy the input to the output, changing the word magic to first
on every line which began with the letter a, changing magic to second on every line which began
with the letter b, and changing magic to third on every line which began with the letter c. All
other words and all other lines are left unchanged.

Lex: A Lexical Analyzer Generator 23

These rules are so simple that the easiest way to do this job is with a flag:

int flag;
rere
-a {flag 'a' ; ECHO;}
-b {flag 'b' ; ECHO;}
-c {flag 'c' ; ECHO;}
\n {flag 0 ; ECHO;}
magic {

switch (flag)
{
case 'a': printf (llfirst II); break;
case 'b': printf("second"); break;

case 'c': printf("third"); break;
default: ECHO; break;
}
}

should be adequate.

To handle the same problem with start conditions, each start condition must be introduced to
Lex in the definitions section with a line reading

reStart namel name2 .. ,

where the conditions may be named in any order. The word Start may be abbreviated to s or
S. The conditions may be referenced at the head of a rule with the < > brackets:

<namel>expression

is a rule which is only recognized when Lex is in the start condition namel. To enter a start
condition, execute the action statement

BEGIN namel;

which changes the start condition to namel. To resume the normal state,

BEGIN 0;

or

BEGIN INITIAL

resets the initial condition of the Lex automaton interpreter.

24 Lex: A Lexical Analyzer Generator

A rule may be active in several start conditions:

<namel.name2.name3>

is a legal prefix. Any rule not beginning with the <> prefix operator is always active. To specify
that a rule is active only in the normal state, prefix it with <INITIAL>. Note that "INITIAL" is
predefined by Lex, and should not be included in a %start declaration.

The same example as before can be written:

%START AA BB CC
%%
-a {ECHO;
-b {ECHO;
-c {ECHO;
\n {ECHO;
<AA>magic
<BB>magic
<CC>magic

BEGIN AA;}
BEGIN BB;}
BEGIN CC;}
BEGIN O;}
printf("first") ;
printf("second") ;
printf("third");

where the logic is exactly the same as in the previous method of handling the problem, but Lex
does the work rather than the user's code.

Lex: A Lexical Analyzer Generator 25

Character Set
The programs generated by Lex handle character I/O only through the routines input, output,

and unput. Thus the character representation provided in these routines is accepted by Lex
and employed to return values in yytext. For internal use, a character is represented as a small
integer which, if the standard library is used, has a value equal to the integer value of the bit
pattern representing th~ character on the host computer. Normally, the letter a is represented
as the same form as the character constant 'a'. If this interpretation is changed, by providing
I/O routines which translate the characters, Lex must be told about it, by giving a translation
table. This table must be in the definitions section, and must be bracketed by lines containing
only "% T". The table contains lines of the form

{integer} {character string}

which indicate the value associated with each character. Thus the next example maps the lower
and upper case letters together into the integers 1 through 26, newline into 27, + and - into 28
and 29, and the digits into 30 through 39. Note the escape for newline. If a table is supplied,
every character that is to appear either in the rules or in any valid input must be included in the
table. No character may be assigned the number 0, and no character may be assigned a bigger
number than the size of the hardware character set.

%T
1 Aa
2 Bb

26 Zz
27 \n
28 +
29
30 0
31 1

39 9
%T

Sample character table.

26 Lex: A Lexical Analyzer Generator

Summary of Source Format
The general form of a Lex source file is:

{definitions}
%%
{rules}
%%
{user subroutines}

The definitions section contains a combination of

1. Definitions, in the form "name space translation".

2. Included code, in the form "space code".

3. Included code, in the form

%{
code
%}

4. Start conditions, given in the form

%S name1 name2 ...

5. Character set tables, in the form

%T
number space character-string

%T

6. Changes to internal array sizes, in the form

%x nnn

where nnn is a decimal integer representing an array size and x selects the parameter as
follows:

Letter
p
n
e
a
k
o

Parameter
positions
states
tree nodes
transitions
packed character classes
output array size

Lex: A Lexical Analyzer Generator 21

Lines in the rules section have the form "expression action" where the action may be continued
on succeeding lines by using braces to delimit it.

Regular expressions in Lex use the following operators:

X

"XII

\x
[xy]
[x-z]
[-x]

-x
<y>x
x$
x?
x*
x+
xly
(x)

x/y
{xx}
x{m,n}

the character "x"
an "x", even if x is an operator.
an "x", even if x is an operator.
the character x or y.
the characters x, y or z.
any character but x.
any character but newline.
an x at the beginning of a line.
an x when Lex is in start condition y.
an x at the end of a line.
an optional x.
0,1,2, .,. instances of x.
1,2,3, ... instances of x.
an x or a y.
an x.
an x but only if followed by y.
the translation of xx from the definitions section.
m through n occurrences of x

Caveats and Bugs
There are pathological expressions which produce exponential growth of the tables when con­
verted to deterministic machines; fortunately, they are rare.

REJECT does not rescan the input; instead it remembers the results of the previous scan. This
means that if a rule with trailing context is found, and REJECT executed, the user must not
have used unput to change the characters forthcoming from the input stream. This is the only
restriction on the user's ability to manipulate the not-yet-processed input.

28 Lex: A Lexical Analyzer Generator

Index

a
action execution by lex .. 10
alternation operator ... 8
ambiguous source rultes ... 14
arbitrary-character matching (dot) ... 7

b
bugs ... 28

c
character classes ... 6
character I/O ... 26
compiling lex source programs .. 18
context handling 8

d
definition expansion ... 9

expressions, optional
expressions, repeated

e
.. 7

7

9
grouping characters ... 8

h
HP-UX usage ... 18

.
I

ignore input .. 10
I/O .. 26

Index 29

I
left-context sensitivity ... 23
lex source definitions ... 16
lex used with yacc ... 2, 19
look-ahead ... 11
look-ahead, implied .. 13

m
matched expression retrieval .. 10

n
numeric repetitions 9

o
operator characters
operator precedence
optional expr~ssions

... 5

p
precedence, operator
prior context sensitivity

r

9
7

9
23

regular expressions .. 5
REJECT ~ .. 15
repeated expressions .. 7

5
source format .. 4
source format summary ... 27
source rules definitions .. 16

y
yacc used with lex 2, 19

30 Index

MANUAL COMMENT CARD

Programming Environment

HP-UX Concepts and Tutorials

HP Part Number 97089-90042 August 1986

Please help us improve this manual. Circle the numbers in the following state­
ment that best indicate how useful you found this manual. Then add any further
comments in the spaces below. In appreciation of your time. we will enter
your name in a quarterly drawing for an HP calculator. Thank you.

The information in this manual:

Is poorly organized 1 2 3 4 5 Is well organized

Is hard to find 1 2 3 4 5 Is easy to find

Doesn't cover enough 1 2 3 4 5 Covers everything

Has too many errors 1 2 3 4 5 Is very accurate

Particular pages with errors?

Comments:

Name: __ __

Job Title: ________________________ _

Company: __ __

Address: __ ___

o Check here if you wish a reply.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 37

POSTAGE WILL BE PAID BY ADDRESSEE

Hewlett-Packard Company
Fort Collins Systems Division
Attn: Customer Documentation
3404 East Harmony Road
Fort Collins, Colorado 80525

LOVELAND, COLORADO

I II II I
NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

MANUAL COMMENT CARD
Programming Environment

HP-UX Concepts and Tutorials

HP Part Number 97089-90042 August 1986

Please help us improve this manual. Circle the numbers in the following state­
ment that best indicate how useful you found this manual. Then add any further
comments in the spaces below. In appreciation of your time, we will enter
your name in a quarterly drawing for an HP calculator. Thank you.

The information in this manual:

Is poorly organized 1 2 3 4 5 Is well organized

Is hard to find 1 2 3 4 5 Is easy to find

Doesn't cover enough 1 2 3 4 5 Covers everything

Has too many errors 1 2 3 4 5 Is very accurate

Particular pages with errors?

Comments:

Name: __ __

Job Title: _________________________ _

Company: __ __

Address: __ _

o Check here if you wish a reply.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 37

POSTAGE WILL BE PAID BY ADDRESSEE

. Hewlett-Packard Company
Fort Collins Systems Division
Attn: Customer Documentation
3404 East Harmony Road

Fort Collins, Colorado 80525

LOVELAND, COLORADO

I II II I
NO POSTAGE
NECESSARY

IF MAILED
IN THE

UNITED STATES

HP Part Number
97089-90042
Microfiche No. 97089-99042
Printed in U.S.A. 8/86

FliOW HEWLETT
~e.. PACKARD

97089-90642
For Internal Use Only

